

"Where will our knowledge take you?"

Alternate Welding Processes for In-Service Welding Final Report

5637C.FR

ALTERNATE WELDING PROCESSES FOR IN-SERVICE WELDING

FINAL REPORT

April 24, 2009

Submitted to:

US Department of Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA) 400-7th Street S.W. Washington, D.C. 20590-0001

Submitted by:

BMT FLEET TECHNOLOGY LIMITED 311 Legget Drive Kanata, Ontario Canada K2K 1Z8

> BMT Contact: Darren Begg Ph.: (613) 592-2830, Ext. 229 Fax: (613) 592-4950 Email: <u>dbegg@fleetech.com</u>

The information contained herein is the copyright of and proprietary to BMT Fleet Technology Limited and must not be disclosed by the receiving party to any other party nor duplicated or used in whole or in part for any purpose other than for the evaluation of the proposal for which the information has been prepared; provided that, if a contract is awarded to BMT Fleet Technology Limited as a result of or in connection with the submission of this information, the receiving party shall have the right to duplicate, use or disclose the information to the extent provided in the contract. This restriction does not limit the recipient's right to use portions of this information if it is obtained from another source without restriction.

BMT FTL DOCUMENT QUALITY CONTROL DATA SHEET

PROPOSAL/REPORT:

Alternate Welding Processes for In-Service Welding"

DATE:

April 24, 2009

PREPARED BY:

Darre- Begg

rogram Manager, Welding and Inspection

REVIEWED :

Nick Pussegoda, Phd, P. Eng. Program Manager, Materials and Metallurgy

REVIEWED AND APPROVED BY:

Aaron Dinovitzer, P. Eng. President

EXECUTIVE SUMMARY

Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a reproducible and consistent manner within an optimal heat input window. The optimal heat input window avoids burn-through (upper limit of heat input) and weld faults or hydrogen induced cold cracking (lower limit of heat input).

Welding on live pipelines has been successfully performed for years, using mainly the shielded metal arc welding (SMAW) process. Over the past 25 years, failures have occurred in welds deposited on inservice pipelines, and these failures have been attributed to weldment hydrogen cracking, and inconsistent bead size or penetration profile. Numerous investigations have been completed to address the most significant in-service welding hazards, namely burn-through and hydrogen-induced cracking. Weld procedures designed to avoid burn-through and hydrogen cracking consider primarily the thermal cycle, while pipe chemistry and internal pressure are additional influencing parameters for delayed cracking and burn-through, respectively. The thermal cycle itself depends on the welding heat energy input, heat sink capacity of the pipeline (pipe wall thickness, fluid type and flow rate), and any preheat or post heat applied.

A significant, process dependant, in-service welding concern that can be addressed by modern power sources is the reliable control of heat input and weld size that are often difficult to maintain in all position welding. To increase in-service welding productivity, improve welder safety and assure weld integrity, alternative arc welding processes and other recent technological developments were evaluated with the objective of defining parameters and conditions associated that can preclude hydrogen cracking and burn-through in a reproducible manner.

The five alternative welding processes that were identified and evaluated in comparison to the benchmark (i.e., SMAW with low hydrogen electrodes) were:

- Self-shielded flux cored arc welding (SS-FCAW):
- Gas metal arc welding with Controlled Dip Transfer Technology, (Miller Electric's Regulated Metal Discharge (RMD)):
- Pulsed Gas Metal Arc Welding (PGMAW) using state-of-the-art power sources with closed loop feedback control:
- Gas Shielded Flux Cored Arc Welding (GS-FCAW):
- Pulsed Metal Cored Arc Welding (PMCAW):

Each of the advanced welding processes has the benefit of:

- allowing higher deposition rate without burn-through. This can be achieved by virtue of a soft arc and reduced penetration, or by running a cold arc, i.e., by allowing a lower heat input for a given deposition rate;
- allowing lower heat input without causing hydrogen induced delayed cracking. This can be achieved through the use of processes/consumables with lower weld metal hydrogen potential. The arc efficiency of each process is another factor which can influence cooling rate, and hence the susceptibility of the weld zone microstructures to delayed cracking at a given energy input;
- having a reduced susceptibility to weld flaws;
- providing better and consistent control of the weld metal puddle;
- rugged and portable equipment for field use; and
- requiring reduced operator skill.

Each of these semi-automatic processes can be used with mechanical tracking devices, and thus remove the variability in weld deposition and thus improve the safety and integrity of in-service welding.

To assess if the alternative processes/variations do indeed offer some or all of the expected advantages, the alternative processes were subjected to mutual head to head experimental comparisons, as well as with the current practice, viz., shielded metal arc welding using low hydrogen electrodes. The comparison or performance trials focused on the prevention of hydrogen cracking, burn-through, and weld flaws. The results of the trials can be used to demonstrate the range of welding parameters that could be expected to produce sound welds for each process and develop comments on ease of welding, preparation requirements, and productivity. The evaluations were performed on instrumented pipe of both low and high strength pipe with a range of heat sink conditions, including static air and water backing, thus representing the extremes of expected in-service heat sink conditions that could be encountered during welding on thin wall live pipelines.

Based on the results of the alternative welding processes evaluated

- (a) Each have the potential to provide slower cooling rates over a range of heat inputs, compared to the SMAW process.
 - Slower cooling resulted in lower CGHAZ hardness and thus lower susceptibility to hydrogen cracking
 - PMCAW and PGMAW demonstrated lower CGHAZ hardness compared to SMAW at the same calculated heat input level.
- (b) Each alternative process exhibited a higher susceptibility to burn-though compared to SMAW, likely due to their higher process arc efficiencies and resulting higher peak inside surface temperature for a given calculated heat input level. The SSFCAW process had demonstrated the highest susceptibility to burn-through, however SMAW with 2.4mm electrodes had demonstrated the lowest.
 - Possible that adjusting pulse waveform parameters could reduce their susceptibility
- (c) Alternative processes offer the advantage of mechanization to enhance consistency of the welding procedure in all positions of welding as well as enhanced productivity with continuous wire feed and less interruptions.
 - PMCAW and PMCAW processes demonstrated enhanced tempering of HAZ's in previously weld deposits at heat inputs 50% lower than the FCAW process, as demonstrated in Task 8.
- (d) Alternate welding processes passed the requirements for bend and nick break testing as per API 1104 specifications.
- (e) Each process demonstrated longer hydrogen delay times in the simulated hydrogen model when welding on water filled pipe compared to the static air conditions.

ACKNOWLEDGEMENTS

The author would like to thank the following organizations for their participation and support in this project:

- US Department of Transportation
- TransCanada Pipelines
- TDW/Williamson Industries
- RMS Welding Systems
- ESAB
- Hobart Brothers
- Miller Electric
- Bohler Thyssen
- Enbridge Pipelines

TABLE OF CONTENTS

1	BACKGROUND1
2	PROJECT OBJECTIVES
3	 WORK SCOPE
	Conditions
4	RESULTS. 10 1 Task 1.1: Literature and Industry Practice Review. 10 2 Task 1.2: Pipe Selection. 10 3 Task 1.3: Welding Consumable Selection 12 4 Task 2: Establish Practical Welding Parameter Ranges for Out-of-Position Welding 15 5 Task 3: Examination the Potential for Burn-Through for the Selected Processes 20 4.5.1 Weld Burn-through – Static Air (No Flow) 22 4.5.2 Water Backed Burn-through Predictions 31 6 Task 4: Examine Cooling Rates as a Function of Welding Process Arc Efficiency 37 7 Task 5: Establish Diffusible Hydrogen Characteristics 43 8 Task 6: Establish Delay Time Predictions 44 9 Task 7: Weld Zone Characterization for Various Repair Scenarios 56 4.9.1 Flowing Air – Bead on Pipe Welds 59 4.9.2 Water Mist Spray – Bead on Pipe Welds 59 4.9.3 Air and Water Backed Results for Bead on Pipe and Sleeve Fillet Welds 64 10 Task 8: Hot-tap Joint Simulation 76
5	CONCLUSIONS

APPENDICES

APPENDIX A: LITERATURE REVIEW RESULTS APPENDIX B: EXPERIMENTAL WELDING PARAMETERS – SMAW, PGMAW, SSFCAW, AND RMD APPENDIX C: TASK 3 – WELD DATA – STATIC AIR APPENDIX D: TASK 3 - WELD DATA – STATIC AIR - MACROS APPENDIX E: TASK 3 – WELD DATA – WATER BACKING APPENDIX F: TASK 3 – WELD DATA – WATER BACKING - MACROS APPENDIX G: TASK 7 – WELDING DATA – FLOWING AIR APPENDIX G: TASK 7 – WELDING DATA – FLOWING AIR APPENDIX I: TASK 7 – WELDING DATA – WATER MIST SPRAY APPENDIX I: TASK 7 – WELDING DATA – WATER MIST SPRAY APPENDIX K: TASK 7 – SLEEVE FILLET WELDING DATA – STATIC AIR APPENDIX L: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX M: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX M: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX M: TASK 7 – SLEEVE FILLET WELDING DATA – STATIC AIR - MACROS APPENDIX M: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX N: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX M: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX N: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING APPENDIX N: TASK 7 – SLEEVE FILLET WELDING DATA – WATER BACKING - MACROS

LIST OF FIGURES

Figure 1.1(a): Cooling Time 800 to 500°C against Thickness for T-Joint (Equal Thickness)	1
Figure 1.1(b): Cooling Time 1500 to 100°C against Thickness for T-Joint (Equal Thickness)	
Figure 1.2: BMT Hydrogen Diffusion and Delayed Cracking Model	
Figure 1.3: Wall Thickness vs. Weld Cooling Time for 40 kJ/in Weld	
Figure 4.1: Welding Positions	
Figure 4.2: Sleeve Simulation Joint Configuration	.16
Figure 4.3: Weld Cross-sections for 6.4mm Pipe Wall X52 Simulations	
Figure 4.4: Cross-sections for 19mm Pipe Wall X80 Simulations	
Figure 4.5: Weld Cross-sections for 6.4mm Pipe Wall X52 Simulations	
Figure 4.6: Cross-sections for 19mm Pipe Wall X80 Simulations	
Figure 4.7: Slotted Pipe to Achieve 3.2mm Thickness	
Figure 4.8: Thermocouple Set-up	
Figure 4.9: Set-up for Controlled Welding with Semi-Automatic Processes	
Figure 4.10: Set-up for Controlled Welding with SMAW Process	
Figure 4.11: Thermal History of Weld and Back Surface	
Figure 4.12: Thermal History of Weld and Back Surface	
Figure 4.13: Peak Back Surface Temperatures vs Heat Input and Process	
Figure 4.14: Weld A62 Macro, 0.53 kJ/mm, 2.5X Mag	
Figure 4.15: Weld A63 Macro, 1.29 kJ/mm, 2.5X Mag	
Figure 4.16: Methodology and Calculations for Determining Burn-through	
Figure 4.17: Burst Pressure / MOP (%) vs. Thickness and Weld Process – 0.53kJ/mm	
Figure 4.18: Burst Pressure / MOP (%) vs. Thickness and Weld Process - 1.29kJ/mm	
Figure 4.19: Burst Pressure / MOP (%) vs. Thickness and Weld Process, Combined Heat Inputs	
Figure 4.20: Water Backed Set-up	
Figure 4.21: Weld FW62 Macro, 0.53 kJ/mm, 2.5X Mag	
Figure 4.22: Weld FW63 Macro, 1.29 kJ/mm, 2.5X Mag	
Figure 4.23: Burst Pressure / MOP (%) vs. Thickness and Weld Process - 0.53kJ/mm	
Figure 4.24: Burst Pressure / MOP (%) vs. Thickness and Weld Process - 0.00kJ/mm	
Figure 4.24: Burst Pressure / MOP (%) vs. Thickness and Weld Process - 1.29kJ/mm	
Figure 4.25: Cooling Rate vs. Heat Input, P-MCAW Process	
Figure 4.20: Cooling Rate vs. Heat input, Process, Heat Input 1.29 kJ/mm	
Figure 4.27: Cooling Rate vs, weiding Process, near input 1.29 ko/min	
Figure 4.29: Heat Input vs. Hardness, 0.4000	
Figure 4.30: Heat Input vs. Hardness, 11mm	
Figure 4.30: Heat input vs. Hardness, 111111	
Figure 4.32: Heat Input vs. Hardness, 10.1mm	
Figure 4.32: Diffusible Hydrogen Comparisons of Each Electrode Evaluated	
Figure 4.33: BMT Fleet Technology Limited Hydrogen Cracking Susceptibility and Delay Time Predict	
Model	
Figure 4.35: Cells Monitored in Model	
Figure 4.36: Hydrogen Concentration vs. Time (Specimen A68, Welded in Static Air)	
Figure 4.37: Specimen W4 – Static Water – Hydrogen vs. Time History	
Figure 4.37: Specimen A4 & W4 – Comparison of Hydrogen Time Histories – Static Air and Static Wa	
– Cell 2	
Figure 4.39: Specimen W5 – Static Water – Hydrogen vs. Time History	
Figure 4.40: Specimen A5 & W5 – Comparison of Hydrogen Time Histories – Static Air and Static Wa	
– Cell 2	
Figure 4.41: Specimen W12 – Static Water – Hydrogen vs. Time History	
Figure 4.41. Specimen W12 – Static Water – Hydrogen Vs. Time History Figure 4.42: Specimen A12 & W12 – Comparison of Hydrogen Time Histories – Static Air and Static	. 55
Water – Cell 2	51
Figure 4.43: Specimen W64 – Static Water – Hydrogen vs. Time History	
Figure 4.44: Specimen A64 & W64 – Comparison of Hydrogen Time Histories – Static Air and Static	. 55
Water – Cell 2	56
Figure 4.45: Weld and Back Surface Cooling Rate, Flowing Air Heat Sink Conditions	. 50 58
Tigare Tite. Word and Daok Canace Cooling Male, Llowing All Heat Sink Conditions	. 00

	Heat Input vs. HAZ Hardness, Flowing Air Conditions	
Figure 4.47:	Weld and Back Surface Cooling Rate, Flowing Water Mist Spray	61
Figure 4.48:	Heat Input vs. HAZ Hardness, Flowing Water Mist Spray	62
Figure 4.49:	Cooling Time vs. Welding Process, 0.53kJ/mm Heat Input	63
	Cooling Time vs. Thickness, 1.29kJ/mm Heat Input	63
Figure 4.51:	Coarse Grain Heat Affected Zone (CG-HAZ) Hardness (Hv) vs Cooling Rate and Carbon	
	Equivalent (CE), Regardless of Heat Sink Condition	
Figure 4.52:	Thermocouple Locations	65
Figure 4.53:	Typical Thermocouple Output	65
	Welding Process vs Cooling Rate, Fillet Weld vs. Bead on Pipe, 0.53 kJ/mm	
	Welding Process vs. Cooling Rate, Fillet Weld vs. Bead on Pipe, 1.29 kJ/mm	
	Heat Input vs. Hardness, PMCAW	
	Heat Input vs. Hardness, GSFCAW	
	Heat Input vs. Hardness, PGCAW	
	Heat Input vs. Hardness, SMAW, 2.4mm Diameter Electrode	
	Heat Input vs. Hardness, SMAW, 3.2mm Diameter Electrode	
	Heat Input vs Hardness vs Cooling Rate, Bead on Pipe, Air Backing	
	Heat Input vs. Hardness vs. Cooling Rate, Sleeve Fillet Welding, Air Backing	
	Heat Input vs. Hardness vs. Cooling Rate, Sleeve Fillet Welding, Water Backing	
	Sleeve Assembly	
	Sleeve Fit-up	
	Mechanized Welding Head and Travel Band Set-up	
	FCAW First Pass	
	FCAW Second Pass	
	FCAW Third Pass	
	PMCAW First Pass	
	PMCAW Second Pass	
	PMCAW Third Pass	
	PGMAW First Pass	
	PGMAW Second Pass	
	PGMAW Third Pass	
	Mechanized Fillet Welding	
	Weld Pass Staggering	
	PMCAW Weld Passes and Average CGHAZ Hardness per Pass	
Figure 4.79:	PGMAW Weld Passes and Average CGHAZ Hardness per Pass	88
Figure 4.80:	FCAW Weld Passes and Average CGHAZ Hardness per Pass	88
	FCAW Face Bend Test Results	
	PGMAW Face Bend Results	
	PMCAW Face Bend Results	
	FCAW Nick Break Results	
	PGMAW Nick Break Results	
Figure 4.86:	PMCAW Nick Break Results	91

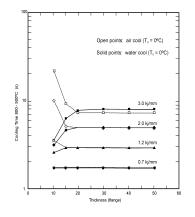
LIST OF TABLES

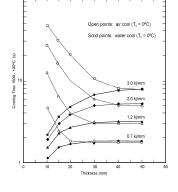
Table 4.1: Base Metal Properties for Pipes Evaluated	11
Table 4.2: Welding Electrode Properties	13
Table 4.3: Dual Shield II 70T-12 Typical Properties and E7018-1 Requirements	
Table 4.4: Dual Shield II 80Ni1H4 Typical Properties and E8018C3 Requirements	15
Table 4.5: Hobart MC70 and MC100 Parameters	
Table 4.6: ESAB Dual Shield II 70T-12 Parameters	
Table 4.7: ESAB Dual Shield II 80 NiMH4 Parameters	19
Table 4.8: Burst Pressure Calculations	28
Table 4.9: Weld Data and Burst Pressure Results	29
Table 4.10: Burst Pressure Calculations	34
Table 4.11: Weld Data and Burst Pressure Results	
Table 4.12: Cooling Data and Hardness Results – Static Air	38
Table 4.13: Diffusible Hydrogen Comparison between As-received and Conditioned Low Hydrogen	
Electrodes	43
Table 4.14: Delay Time Prediction Results	48
Table 4.15: Cooling Rate and Hardness Results – Flowing Air Conditions	57
Table 4.16: Cooling Rate and Hardness Data vs. Process – Water Mist Spray Conditions	
Table 4.17: Cooling Data and Hardness Results – Bead on Pipe – Water Backing	66
Table 4.18: Cooling Data and Hardness Results – Sleeve Fillet Welds – Static Air (No Flow)	
Table 4.19: Cooling Data and Hardness Results – Sleeve Fillet Welds – Water Backing	
Table 4.20: Mechanized Fillet Welding Procedures	79

LIST OF ACRONYMS

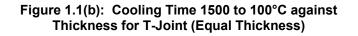
BMT FTL	BMT Fleet Technology Limited
CGHAZ	Coarse Grain Heat Affected Zone
ESO	Electrical Stick-out
EWI	Edison Welding Institute
FCAW	Flux Cored Arc Welding
IPM	Inches per Minute
PGMAW	Pulse Gas Metal Arc Welding
PHMSA	Pipeline and Hazardous Materials Safety Administration
PMCAW	Pulse Metal Cored
PRCI	Pipeline Research Council International
RMD	Regulated Metal Deposition
SMAW	Shielded Metal Arc Welding
SMAW	Shielded Metal Arc Welding
TCPL	TransCanada Pipeline Limited
TS	Travel Speed
USDOT	US Department of Transportation
WFS	Wire Feed Speed
···· •	

1 BACKGROUND


Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a reproducible and consistent manner within an optimal heat input window. The optimal heat input window avoids burn-through (upper limit of heat input) and weld faults or hydrogen induced cold cracking (lower limit of heat input).


Numerous investigations have been undertaken in the past to study welding on pressurized pipelines. Some of these are numerical in nature and aim to model heat flow to determine:

- (a) the heat input to cause burn-through in pipes of various thickness, carrying fluids at various pressures and flow rates; and
- (b) 800°C to 500°C cooling time as an indicator of the weld zone microstructure and hardness, and therefore of the susceptibility to delayed cracking.


For example, **Figures 1.1(a)** and **1.1(b)**¹ display, in a quantitative manner, the general understanding that the effect of the water backing on cooling rate increases as the energy input increases or thickness decreases. From such data, one can estimate a critical thickness above which the water backing has no affect on the cooling rate.

Welding on live pipelines has been successfully performed for years, using mainly the shielded metal arc welding (SMAW) process. Over the past 25 years, failures have occurred in welds deposited on inservice pipelines, and these failures have been attributed to weldment hydrogen cracking, and inconsistent bead size or penetration profile. Numerous investigations have been completed to address the most significant in-service welding hazards, namely burn-through and hydrogen-induced cracking. Weld procedures designed to avoid burn-through and hydrogen cracking consider primarily the thermal cycle, while pipe chemistry and internal pressure are additional influencing parameters for delayed cracking and burn-through, respectively. The thermal cycle itself depends on the welding heat energy input, heat sink capacity of the pipeline (pipe wall thickness, fluid type and flow rate), and any preheat or post heat applied.

¹ Morrison, K.G.; "Repair Welding of Stiffeners to Hull Plating in Low Temperature Marine Environments without Preheat"; Fleet Technology Limited Report E83366C; November 1990

BMT and Graville Associates^{2,3,4} developed and continue to refine an engineering tool for multi-pass weld hydrogen management which addresses many of the concerns related to hydrogen cracking. The current model considers a wide range of welding, environmental and material parameters influencing the risk of hydrogen cracking, and can also be applied to welding of the newer microalloyed, high strength steels used for major pipeline projects. This delayed cracking risk assessment approach is based upon a two-dimensional weld representation, assuming that hydrogen diffusion and heat flow are primarily normal to the weld axis. The inputs include a user-defined welding procedure, material description and weld cross-section, as shown in **Figure 1.2** for a six pass fillet welded sleeve welding procedure. Weld cracking susceptibility is based upon local hydrogen concentration, microstructure susceptibility (quantified in terms of hardness) and stress effects, thus developing a time history of cracking risk for all locations within the weldment. This model has been validated against lab trial results and continues to be improved.

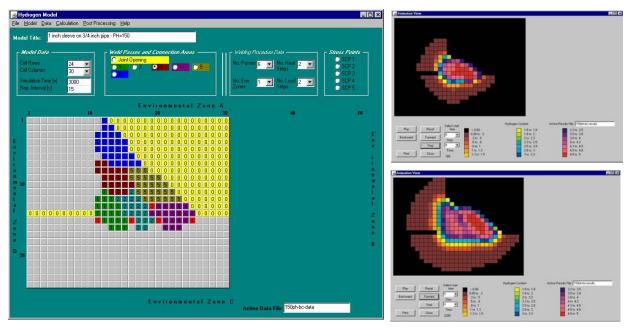


Figure 1.2: BMT Hydrogen Diffusion and Delayed Cracking Model

Other investigations have been experimental in nature and focused on weld zone cooling time and/or heat-affected zone hardness⁵ as an indicator of the potential of hydrogen induced cold cracking (for example, see **Figure 1.3**⁶). Variables considered include heat input, pipe thickness and fluid flow characteristics. Analytic tools and graphical outputs are developed from these studies to help define ideal heat inputs for in-service welding.

² Dinovitzer, A., (1998), "Modelling Weld Hydrogen Diffusion and Predicting Delayed Cracking in Multi-Pass Welds", Fleet Technology Limited internal development report

³ Dinovitzer, A., Graville, B., Glover, A., Pussegoda, N., "Multi-Pass Weld Hydrogen Management to Prevent Delayed Cracking", International Pipeline Conference, Calgary ,2000

⁴ Graville, B.A., (1997), "The risk of delayed hydrogen cracking in pipeline welds", report P398/1 for Nova Gas Transmission Ltd., November ⁵ Coe, F.R., "Welding Steels without Hydrogen Cracking", The Welding Institute, UK, 1973.

⁶ Bruce, W.A.; "Hydrogen Cracking of Water-backed Welds"; International Conference on Advances in Welding Technology: Joining of High Performance Steels, Columbus, Ohio, November 1996

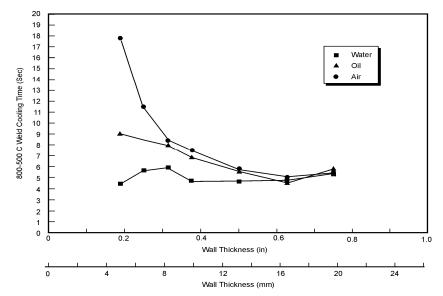
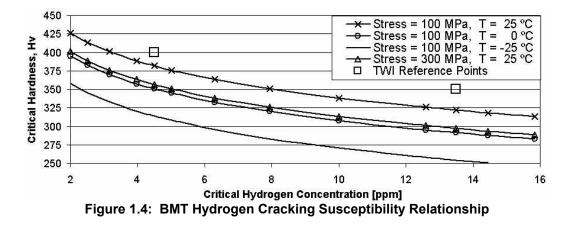



Figure 1.3: Wall Thickness vs. Weld Cooling Time for 40 kJ/in Weld

BMT has focused its numerical and experimental in-service welding investigations on three primary issues: the prevention of hydrogen cracking, the effectiveness of tempering on multi-pass weld hardness control and the development of welding procedures that ensure fault free high toughness welds. The prevention of delayed cracking involves the control of hydrogen, microstructure susceptibility, and tensile stresses. To understand the interaction of these factors, BMT has developed several tests to characterize the susceptibility of a base metal or weld metal to hydrogen cracking. These tests have been used along with other industry data to calibrate the BMT numerical model predicting the susceptibility of multi-pass weld procedures to hydrogen cracking. The constant deflection and slow bend tests, being standardized in a PRCI funded project are used to quantify susceptibility of materials and welding procedures to hydrogen cracking⁷. This data has been used to develop a preliminary quantitative relationship between HAZ critical hardness, weld metal hydrogen content, local stress (**Figure 1.4**) that compares well with current industry standard hardness limits.

⁷ Malik, Pussegoda, Graville, Glover, "Prediction of Maximum Time for Delayed Cracking in a Simulated Girth Weld Repair", International Pipeline Conference 1998.

This data is used in the BMT hydrogen cracking numerical model to identify hydrogen cracking risk, maximum cracking delay time and allows the user to investigate the effect of environmental, applied loading and welding procedure parameters on these results.

Experimentally, BMT has made extensive use of its welding expertise to evaluate welding equipment, consumables and procedures to produce sound welds with desired mechanical properties (e.g., fracture toughness). This work has been completed for a range of steels on plate and pipe in air and in the BMT in-service welding simulation flow loop facility.

2 PROJECT OBJECTIVES

The primary objective of this project is to define parameters and conditions associated with each advanced welding process that can preclude hydrogen cracking and burn-through in a reproducible manner.

A significant, process dependant, in-service welding concern that can be addressed by modern power sources is the reliable control of heat input and weld size that are often difficult to maintain in all position welding.

To increase in-service welding productivity, improve welder safety and assure weld integrity, alternative arc welding processes and other recent technological developments were evaluated. Welding process and procedure characteristics that aid in achieving these goals include:

- (a) allowing higher deposition rate without burn-through. This can be achieved by virtue of a soft arc and reduced penetration, or by running a cold arc, i.e., by allowing a lower heat input for a given deposition rate;
- (b) allowing lower heat input without causing hydrogen induced delayed cracking. This can be achieved through the use of processes/consumables with lower weld metal hydrogen potential. The arc efficiency of each process is another factor which can influence cooling rate, and hence the susceptibility of the weld zone microstructures to delayed cracking at a given energy input;
- (c) having a reduced susceptibility to weld flaws;
- (d) providing better and consistent control of the weld metal puddle;
- (e) rugged and portable equipment for field use; and
- (f) requiring reduced operator skill.

Five alternative welding processes were identified and evaluated that possessed one or more of the above desirable characteristics, compared to the SMAW process, and these were:

- (a) Self-shielded flux cored arc welding (SS-FCAW):
 - higher productivity compared to SMAW;
 - controlled hydrogen, generally between that for low hydrogen SMAW electrodes and the GMAW process;
 - no shielding gas required and amenable to use in an outdoor environment without inducing weld flaws;
 - minimal skill requirement above and beyond that for the SMAW process; and
 - rugged equipment suitable for field use.
- (b) Gas metal arc welding with Controlled Dip Transfer Technology, (Miller Electric's Regulated Metal Discharge (RMD)):
 - higher productivity compared to SMAW;
 - ability to achieve a higher deposition rate at a given energy input due to some flexibility in controlling the wire feed speed independent of the energy input;
 - lower weld metal hydrogen content; better and consistent control of the weld puddle and root bead profile;
 - out of position welding capability; may require higher operator skill level; and
 - equipment designed for field use, pipeline girth welds being a prime application.
- (c) Pulsed Gas Metal Arc Welding (PGMAW) using state-of-the-art power sources with closed loop feedback control:
 - higher productivity compared to SMAW;
 - lower weld metal hydrogen content;
 - better and consistent control of the weld puddle, reduced susceptibility to flaws in all position welding;

- equipment suitable for use in field environment; and
- requires greater skill than that for the SMAW process.
- (d) Gas Shielded Flux Cored Arc Welding (GS-FCAW):
 - higher productivity compared to GMAW;
 - low weld metal hydrogen content;
 - consistent control of the weld puddle, reduced susceptibility to flaws in all position welding; equipment suitable for use in field environment; requires greater skill than the SMAW process, but less skill than GMAW;
 - more tolerable of wind and drafts compared to GMAW (due to the protective slag covering).
- (e) Pulsed Metal Cored Arc Welding (PMCAW):
 - productivity between GS-FCAW and PGMAW, less susceptible to lack of fusion flaws compared to PGMAW, low weld metal hydrogen content;
 - requires greater skill than the SMAW process but less than P-GMAW;
 - electrodes can easily be manufactured to a specific composition.

Each of these semi-automatic processes has the potential to be used with mechanical tracking devices, and thus remove the variability in weld deposition and thus improve the safety and integrity of in-service welding. Mechanized welding also requires less welder skill to operate and apply welding procedures. The improved weld bead profiles that can be realized with mechanized welding also make these potential variants excellent candidates for temper bead welding procedures. Temper beads are used for high carbon equivalent pipe where weld parameters cannot on their own reduce heat-affected zone hardness to levels that would avoid hydrogen cracking.

3 WORK SCOPE

To assess if the alternative processes/variations do indeed offer some or all of the expected advantages, the alternative processes were subjected to mutual head to head experimental comparisons, as well as with the current practice, viz., shielded metal arc welding using low hydrogen electrodes. The comparison or performance trials focused on the prevention of hydrogen cracking, burn-through, and weld flaws. The results of the trials can be used to demonstrate the range of welding parameters that could be expected to produce sound welds for each process and develop comments on ease of welding, preparation requirements, and productivity. The evaluations were performed on instrumented pipe of both low and high strength pipe with a range of heat sink conditions, including static air and water backing, thus representing the extremes of expected in-service heat sink conditions that could be encountered during welding on thin wall live pipelines. A description of each task is provided below.

3.1 Task 1: Literature and Industry Practice Review: Establish the Current State-of-the-Art In Welding Process and Procedure Application for Hot Tapping and Repairs for the Linepipe Materials of Interest.

Work Scope: Pertinent documents were procured along with other pipeline research reports on this subject. A significant source of this information was from PRCI reports outlining the results of previous initiatives. All the gathered information was reviewed and a state-of-the-art summary was prepared that include:

- (a) burn-through tendency and weld zone cooling rate as a function of the welding process, energy input, thickness and the backing medium; and
- (b) practices for hot tapping and build-up repair in the field..

It was suggested from the onset that X52 and X80 be chosen for the evaluations, as these would demonstrate higher CE and strength, respectively, each having very different susceptibilities to cracking.

3.2 Task 2: Establish Practical Welding Parameter Ranges for Out-of-Position Welding

Work Scope: The intention of this task was to define the range of parameters that would be practical for in-service welding applications and not induce lack of fusion type of flaws. The consumables of interest for all evaluations were slightly over-matching and matching strength with respect to the X52 and X80 base materials, respectively.

Practical welding parameter ranges were established for buttering and for fillet welds of various sizes. The variables involved position of welding and the main pipe wall thickness. The highest and lowest ranges of heat inputs were established based on the following weld trial characteristics: weld bead visual appearances, weld pool fluidity and base metal wetting, weld depth of penetration and shape, and, susceptibility to interpass and lack of side wall fusion flaws.

3.3 Task 3: Examination the Potential for Burn-Through for the Selected Processes

Work Scope: Using the range of heat input limits established in Task 2, the critical material thicknesses and pressures for burn-through to occur were established with each welding processes of interest. This task was conducted with "still air" backing to simulate worst-case conditions. Thermocouples were placed on the opposite side of the pipe along the weld axis to measure the temperature of the base metal ligament between the root of the weld bead and the backside of the plate surface. These temperature measurements, along with macro sectioning and empirical correlations were used to numerically estimate the yield strength reduction (vs. increasing temperature) of the remaining base metal ligament and the susceptibility to significant bulging or blow out at various pipeline pressures.

3.4 Task 4: Examine Cooling Rates as a Function of Welding Process Arc Efficiency

Work Scope: The arc efficiency of each welding process type is known to have an effect on the cooling rate for a given heat input, therefore different results can be obtained when measuring the HAZ hardness and the susceptibility to cracking from one process to another. For example, the submerged arc welding is rated at approximately 95% arc efficiency and will have a slower cooling rate at a given heat input in comparison to the GMAW process, which is rated at approximately 75% arc efficiency. Although the arc efficiency differences for the SMAW, GMAW, and FCAW processes are small, they can still have a pronounced effect on the cooling rates and the resulting HAZ hardness, especially when welding on a live pipeline.

A series of bead on plate welds were conducted with each process over the range of heat inputs established in Task 2. Each plate was instrumented with a series of thermocouples attached to a multichannel high-speed temperature data acquisition system, to examine the 1000 to 100°C and 800 to 500°C cooling times for each process. Samples were extracted from each weld to examine bead profiles, depth of penetration, and weld zone hardness. The results were compared to those obtained in Task 7 that simulated various operating and environmental in-service welding conditions (i.e., static air, flowing air, air-mist, and water backing) for each material of interest.

3.5 Task 5: Establish Diffusible Hydrogen Characteristics

Work Scope: The hydrogen potential of each process/consumable combination was characterized using AWS 4.3 standard of testing under mercury. Since welding parameters are known to influence the hydrogen entrapment, the diffusible hydrogen of each process was characterized at several welding parameter settings within the heat input range established in Task 2. The results from this task were used in correlation with Task 6 for determining delay times (i.e., time to peak hydrogen concentration and thus maximum time to cracking) with each process/consumable and base metal combination evaluated.

3.6 Task 6: Prediction of Delay Times for Hydrogen Cracking

Work Scope: BMT Fleet Technology Limited's hydrogen diffusion model was used to estimate the delay times for sample welds that are considered cracking susceptible (i.e., have a hardness of 300 HVN or more).

3.7 Task 7: Weld Zone Characterization for a Variety of Simulated Pipeline In-service Welding Conditions

Work Scope: Deposit a series of bead on pipe and fillet welds on pipe with flowing air, water-mist spray, and water backing using each welding process (at the predetermined highest and lowest heat inputs) and base materials of interest. Samples were extracted from each weld to examine the weld penetration depths and profiles, measure weld zone hardness, and to compare the results compared back those in Tasks 3 and 4. The intention of this task was to determine if susceptibility to burn-through could reduce with increasing heat sink capacity, at a given heat input level, and, if one or more processes could extend the safety envelope of in-service welding compared back to the SMAW process.

3.8 Task 8: Hot-tap Joint Simulation

Work Scope: Hot-tapping sleeve joints were simulated using pressure retaining sleeves provided by Williamson Industries. Modified mechanized welding equipment (by RMS Welding Systems) designed specifically for circumferential girth welding was used to complete the in-service hot tap sleeve welding simulations. Macros were removed from each position of welding for examination and hardness measurements as well for nick break tests in accordance with API 1104. The simulations were conducted in still air (rather than flowing water) to keep costs down of transporting either the BMT flow loop or mechanized welding equipment "to and from" the equipment manufacture's locations. Note that the primary objective of this task was to evaluate the equipment's <u>ability</u> to reproduce the procedures developed in the lab in each clock position of welding.

4 RESULTS

4.1 Task 1.1: Literature and Industry Practice Review

Research reports related to welding on in-service pipelines were gathered from project team members. Each report was reviewed and a state-of-the-art summary was produced from each, and is included in **Appendix A**. Most of the information discussed in these reports focuses on the use of the shielded metal arc welding (SMAW) process.

Although one of objectives in Task 1 was to review the application of state-of-the-art mechanized welding of sleeves to in-service pipelines, insufficient information was available from publicly published reports. The research reports reviewed included a series of experimental procedures for depositing welds on thin walled pipe and preventing the incidence of burn-through, using the SMAW process. The main variables used to establish burn-through limitations in these reports were the pipe wall thickness, electrode diameter, heat input, and flow rate and medium. A number of these procedures were duplicated in the lab to confirm their effectiveness to control burn-through on thin walled pipe, and are discussed in more detail in Tasks 3, 4, and 7 herein.

In developing a framework to establish optimal procedures for welding on "live" pipelines, three goals need to be achieved, that being:

- (1) prevention of hydrogen cracking;
- (2) prevention of burn-through; and
- (3) prevention of weld flaws.

Of these, prevention of burn-through and of weld flaws depend on physical properties of the pipeline steel and welding parameters, and so any recommendations developed in this regard would be valid irrespective of the pipeline steel grade, since physical properties such as thermal conductivity are not altered by steel composition, at least within the range applicable to pipeline steels.

The incidence of hydrogen cracking, on the other hand, is strongly influenced by the composition and strength, and hence the grade of the steel. Older pipelines (e.g., 1950-60's vintage), were typically X52 grade, and steel composition used to be C-Mn type, with carbon in the range of 0.15 to 0.30%. Under fast cooling conditions of welding on live pipelines, the Heat Affected Zone (HAZ) in these steels can be quite hard (>350 VPN) thus increasing the potential for hydrogen cracking in the HAZ.

More recent pipelines have utilized X80 grade pipeline steels since they have lower carbon content (typically 0.05%) and thus represent better HAZ weldability in spite of their higher strength. However, research in recent years has suggested that critical hardness to prevent HAZ hydrogen cracking is lower in lower carbon steels and therefore any reliance on models predicting HAZ hardness as a function of composition and cooling rate must take this into account. Secondly, even if the potential for HAZ hydrogen cracking might be acceptably small, the necessary use of higher strength and therefore more highly alloyed weld metal increase the potential for weld metal cracking.

In the experimental program being undertaken here, including both these grades of pipeline steels (i.e., X52 and X80) will thus ensure that the hydrogen cracking resistant procedures recommended would have taken into account HAZ and weld metal susceptibilities as well as the effects of base metal and weld metal strengths.

4.2 Task 1.2: Pipe Selection

The grades, sizes, and thicknesses of X52 and X80 pipes obtained from industry for this study, including their composition and mechanical properties, are shown in **Table 4.1**. Although some of the pipes obtained are X70 grade, each of their yield strengths and carbon equivalents are within the range typical of X80, and should provide similar characteristics with respect to weldability.

		Base Meta	l								Cł	nemica	I Com	ositio	n (%)						Mechanical Properties				
Grade	Manufacture	Diameter	Thickness	Heat Number	С	Mn	Si	S	Р	Cr	Мо	Nb	V	Ni	Cu	Ti	AI	Ν	В	CE (Z245.2:1974)	UTS (ksi)	YS (ksi)	Elongation (%)	Charpy V-notch	
																								J	°C
X52	LTV	NPS 10	6.4	293201	.05	1.04	.22			.04	.02	.044	.001	.03	.05					.16	75.7	69.7	35	61 (1/2 size)	-5
X52	NA	NPS 20	6.4	NA	.24	1.09	.033			.029				.025	.033					.43	78.3	58.5	32.5	12 (1/2 size)	-5
				(era 1972)																					
X52	LTV	NPS12	8	133062	.066	.72	.023	.021	.014	.042	.005	.037	.026	.01	.028					.14	70.2	62.4	37	NA	1
X70	STELCO	NPS36	11	565879	.031	1.54	.021	.0042	.0024	.066	.19	.07	.034	.15	.34					.22	88	74.2	32	NA	
X80	STELCO	NPS 48	16.1	561831	.04	1.74	.37	.002	.014	.04	.31	.076	.004	.32	.28	.012	.029	.008		.27	106.8	86.2	40	168	-5
X70	SUMITOMO	NPS 40	19	2822519	.06	1.57	.14	.002	.011	.03	.17	.042	.04	.13	.14	.017	.029	.0034	.0001	.24	98	89	22.1	324	-5

Table 4.1: Base Metal Properties for Pipes Evaluated

4.3 Task 1.3: Welding Consumable Selection

Based on input from the project team and the consumable suppliers, welding consumables were selected for each grade of pipe. The electrodes selected were to provide suitable matching strength with the parent base metals, exhibit low diffusible hydrogen characteristics, and be able to operate and produce sound welds in each position of welding.

The project sponsors were consulted to determine if candidate off-the-shelf electrodes were available for the SMAW benchmark procedures, as well as the PGMAW, Self Shielded FCAW, and Controlled Dip Transfer Welding Process (i.e., RMD) that were examined. Based on their input, the electrodes shown in **Table 4.2** were utilized. Each electrode was selected based on its ability to provide matching strengths to the pipe grade as well as exhibit low diffusible hydrogen characteristics

		Electrode									Chemic	al Cor	npositio	on (%)							Mech	anical Properti	es	
Manufacture	AWS Classification	Trade Name	Size	Lot Number	Pipe Grade Application	С	Mn	Si	S	Р	Cu	Cr	Ni	Мо	V	Ti	AI	Co	Nb	UTS (ksi)	YS (ksi)	Elongation (%)		arpy otch °F
Hobart	E71T8-K6	Fabshield 71K6 ⁽¹⁾	5/64	H01629	X52	.04	.91	.06	.005	.012	<.01	.04	.74	.02	<.01		.72	.25		74	62	30	120	-40
Hobart	E81T8-Ni2 J	Fabshield 81N2 ⁽¹⁾	5/64	H02453	X80	.02	1.02	.05	.004	.011	<.01	.08	2.28	.02	<.01		.69	.35		88	76	26	96	-40
Hobart	E7018-1 H4R	718MC	3/32		X52		•			•	•	•	•	•	Not repo	orted								
Hobart	E7018-1 H4R	718MC ⁽¹⁾	1/8		X52	.05	1.07	.61	.012	.009		.02	.06	<.01	.01					79	66	30	81	-50
ESAB	E10018-G	Filarc 108MP ⁽¹⁾	1/8	1136191	X80	.07	1.98		.008	.006			.96		.02				.01					
ESAB	MIL-10018-M1	Atomarc 10018-M1	1/8	4A321M02	X80	.035	1.18	.29	.010	.009		.02	1.95	.31	.01							Not reported		
ESAB	ER70S-G	Spoolarc XTi ⁽³⁾	.035		X80	.08	1.62	.64	.006	.012	.01					.045								
Bohler Thyssen	ER70S-6	Thyssen K- Nova ⁽³⁾	.035		X52	.081	1.33	.61	.012	.008	.12	.04	.03	.005	.002	.021				88	81	24.5	87	-40
Bohler Thyssen	ER70S-6	Thyssen K- Nova ⁽³⁾	.047		X52	.069	1.10	.50	.014	.007	.08	.05	.02	.009	.001	.021				82	69	26.2	53	-20

Table 4.2: Welding Electrode Properties

Notes:

Chemical Composition from Weld Pad Analysis Average Absorbed Energy Chemical Composition from Wire Analysis

(1) (2) (3)

The project sponsors were consulted to determine if candidate off-the-shelf electrodes were also available for the PMCAW and gas shielded FCAW processes. Hobart Brothers recently had developed two metal cored electrode products for this application and the trade names are MC70 and MC100. Trans Canada Pipelines Limited (TCPL) had been concurrently evaluating the MC100 electrode for X80 grade pipe and their findings were sufficiently appealing to warrant further investigation in this test program. Previous testing by Hobart on their MC70 product demonstrated all weld metal mechanical properties of 78 ksi Yield Strength (YS), 91 ksi Ultimate Tensile Strength (UTS), and an average of 18 ft-lbs at -40°F, which are sufficient properties for X52 grade pipe. The MC100 product had demonstrated 95 ksi YS, 106 ksi UTS, and 41 ft-lbs at -40°F, which are sufficient properties for X80 grade pipe.

TCPL had also been examining gas shielded flux cored products from ESAB for various applications and these are the Dual Shield II 70T-12MJ H4 and Dual Shield II 80Ni1H4 electrodes. The Dual Shield II 70T-12MJH4 is an all position flux cored wire intended for applications with weld metal impact toughness requirements of more than 50 ft-lbs at -60°F, as well as Cracking Tip Opening Displacement (CTOD = industry accepted measurement of fracture toughness characterising a material's resistance to rapid crack extension) requirements of more than 20 mils at -40°F. The weld metal composition, strength, and diffusible hydrogen characteristics are reportedly similar to an E7018-1 shield metal arc welding (SMAW) electrode, and the typical properties as well as the AWS A5.1 requirements for an E7018-1 electrode are shown in **Table 4.3**. As shown in Table 3, both electrodes can produce welds with ultimate strength and elongation of the same order of magnitude. The apparent differences in toughness and yield strength are due to the different manner in which they are specified for each material.

		С	omposi	tion (%)*				Mechanical	Properties		
Electrode		Mn	Si	Р	S	Ni	Tensile	Yield	% Elongation	Charpy V- Notch Impact		
Electione	С						Strength	Strength		Temperature	Avg. Energy	
							(Mpa)	(Mpa)		(°C)	(J)	
Dual Shield II	0.05	1.16	0.31	0.008	0.012		580	531	28	-40	122	
70T-12												
E7018-1	NS	1.6	0.75	NS	NS	0.3	482 min.	399 min.	22 min.	-46	27 min.	
Requirements		max.	max.									
per AWS A5.1												
Standard												
NS = Not												
Specified												

Table 4.3: Dual Shield II 70T-12 Typical Properties and E7018-1 Requirements

The weld metal analysis of the Dual Shield II 80Ni1H4 is reportedly similar to an E8018-C3 low hydrogen SMAW electrode and produces excellent weld metal toughness in both the as-welded and stress relieved condition, and the typical properties as well as the AWS A5.5 requirements for E8018-C3 electrodes are shown in **Table 4.4**. As shown in Table 4.4, both electrodes can produce welds with ultimate strength, yield strength and elongation of the same order of magnitude. The apparent differences in toughness are due to the different manner in which it is specified for each material.

		С	omposi	tion (%)*]	Mechanical	Properties		
Electrode				Р			Tensile	Yield	% Elongation	Charpy V- Notch Impact		
Electrode	С	Mn	Si		S	Ni	Strength	Strength		Temperature	Avg. Energy	
							(Mpa)	(Mpa)	Liongation	(°C)	(J)	
Dual Shield II	0.048	1.18	0.32	0.015	0.009	0.91	600	545	28	-40	156	
80Ni1H4												
E8018-C3	0.12	0.40 to	0.80	0.03	0.03	0.80 to	550 min.	470 to	24 min.	-40	27 min.	
Requirements	max.	1.25	max.	max.	max.	1.10		550				
per AWS A5.5												
Standard												
NS = Not												
Specified												

Table 4.4: Dual Shield II 80Ni1H4 Typical Properties and E8018C3 Requirements

Both of the above flux cored products are considered low hydrogen that can produce <4ml of diffusible hydrogen per 100g of weld metal over a wide range of welding parameters. Low hydrogen electrodes are essential for reducing the risk for cracking under the conditions typical for in-service welding.

4.4 Task 2: Establish Practical Welding Parameter Ranges for Out-of-Position Welding

Each of the electrodes selected were used to produce fillet welds in each position of welding for a range of base metal thickness combinations. Each position of welding evaluated simulates those that would be experienced in the 5G position, i.e., the carrier pipe fixed in the horizontal position with welding progressing around its circumference, as shown in **Figure 4.1**.

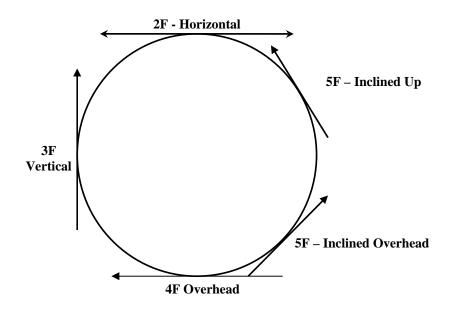


Figure 4.1: Welding Positions

This information was used to establish baseline welding conditions for the welding trials in later tasks. Mild steel plates were used for the welding parameter development trials instead of conventional pipeline materials as the steel grade, at least within the range of steels evaluated in this study, are not likely to have any influence on the process applications.

The simulated sleeve joint utilized a plate of "T" thickness (representing the parent pipe thickness) and a plate of at least "1.5T" (representing the sleeve thickness) which was selected based on input from TCPL, as shown in **Figure 4.2**. Parameters were developed for the 2F, 3F, 5F - 45° over-head, and 5F - 45° inclined positions.

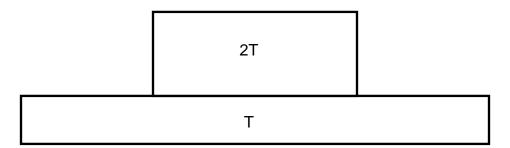


Figure 4.2: Sleeve Simulation Joint Configuration

The range of all parameters tested with the SMAW, PGMAW, self shielded FCAW, and RMD processes are tabulated in **Appendix B**. Note that BOP welds were rated as safe, marginal, and burn-thorough in the table in Appendix B, where:

- (a) safe = heat input to avoid burn-through;
- (b) marginal = HAZ extends to back side of plate however no melting on the backside of plate occurs; and
- (c) burn-through = weld has penetrated the plate thickness or melting occurred on the back side of the plate.

These safe and marginal limits were verified in the burn-through susceptibility task based on back surface temperature measurements and weld penetration depths during welding.

The welding parameters that were developed in each position of welding with the PMCAW products and with C15 gas ($15\%CO_2 - bal$. Argon) are shown in **Table 4.5**, using the Miller Axcess 450 power source with their Accu-Pulse technology. Several trials were conducted with various combinations of wire feed speed and pulse parameters to fine tune the arc and the final procedures are considered suitable for depositing single fillet welds (5 and 6mm leg size) in each position as well as for multi-pass welding to achieve larger fillet weld sizes. Cross-sections were extracted from each mock-up to evaluate the depth of penetration and soundness, and a sample weld cross section for MC70 and MC100 are shown in **Figure 4.3** and **4.4**, respectively, illustrating each position of welding for the smallest X52 and largest X80 pipe wall thicknesses being evaluated. Each cross-section exhibited acceptable bead profiles with equal leg lengths and suitable penetration to the root region. Note that the simulated sleeve thickness was at least 1.5 times the thickness of the thinner base plate.

Base Plate Thickness (mm)	Single Fillet Weld Leg Size (mm)	Position	Wire Feed Speed (in/min)	Amperage (A)	Voltage (V)	Travel Speed (in/min)	Heat Input (kJ/mm)
X52 –							
6.4	5		200	140	20.5	13	0.52
8	6		240	165	20	10.5	0.74
X80 - N		2F		-			
11	6		240	165	20	10.5	0.74
16.1	6		240	165	20	10.5	0.74
19.1	6		240	165	20	10.5	0.74
X52 –							
6.4	5		180	115	19.5	6	0.88
8	6		180	130	18.5	8	0.71
X80 – N	/IC100	3F - up					
11	6		180	130	18.5	8	0.71
16.1	6		180	130	18.5	8	0.71
19.1	6		180	130	18.5	8	0.71
X52 –	MC70			_			
6.4	5		180	135	20.5	10	0.65
8	6		180	135	19.5	8.5	0.73
X80 – N	/IC100	4F					
11	6		180	135	19.5	8.5	0.73
16.1	6		180	135	19.5	8.5	0.73
19.1	6		180	135	19.5	8.5	0.73
X52 –	MC70						
6.4	5		180	135	20.5	8	0.82
8	6		180	130	20	7.5	0.82
X80 – N	/IC100	5F					
11	6		180	130	20	7.5	0.82
16.1	6		180	130	20	7.5	0.82
19.1	6		180	130	20	7.5	0.82

Table 4.5:	Hobart MC70	and MC100	Parameters
------------	-------------	-----------	------------

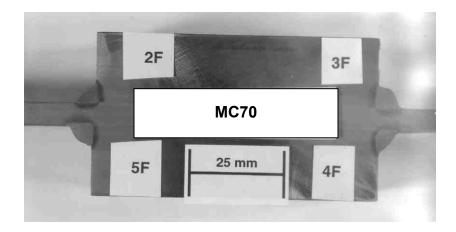


Figure 4.3: Weld Cross-sections for 6.4mm Pipe Wall X52 Simulations

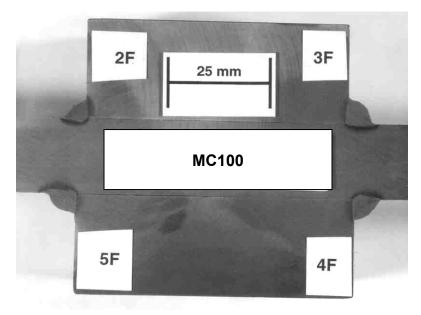


Figure 4.4: Cross-sections for 19mm Pipe Wall X80 Simulations

The welding parameters that were developed in each position of welding with the gas shielded FCAW products and C25 gas (25% CO_2 – bal. Argon) are shown in **Table 4.6** and **4.7**, using a conventional constant voltage (CV) power source. The final welding procedures are considered suitable for depositing single fillet welds (5 and 6mm leg size) in each position as well as for multi-pass welding to achieve larger fillet weld sizes. Cross-sections were extracted from each mock-up to evaluate the depth of penetration and soundness, and sample weld cross sections are shown in **Figure 4.5** and **4.6** illustrating each position of welding for the smallest X52 and largest X80 pipe wall thicknesses being evaluated. Each cross section exhibited acceptable bead profiles with equal leg lengths and suitable penetration to the root region.

Base Plate Thickness (mm)	Single Fillet Weld Leg Size (mm)	Position	Wire Feed Speed (in/min)	Amperage (A)	Voltage (V)	Travel Speed (in/min)	Heat Input (kJ/mm)
6.4	5	2F	325	200	25.5	12	1.00
8	6	21	360	220	26.5	12	1.15
	-						
6.4	5	3F - up	325	205	25.5	9.5	1.30
8	6	SF - up	330	210	26.5	8	1.64
	-						
6.4	5	4F	320	200	25	12	0.98
8	6	41	345	215	25.5	11	1.18
6.4	5	5F	320	200	24.5	10	1.16
8	6	JF	345	215	25.5	8.5	1.52

Table 4.6: ESAB Dual Shield II 70T-12 Parameters

Table 4.7: ESAB Dual Shield II 80 NiMH4 Parameters

Base Plate Thickness (mm)	Single Fillet Weld Leg Size (mm)	Position	Wire Feed Speed (in/min)	Amperage (A)	Voltage (V)	Travel Speed (in/min)	Heat Input (kJ/mm)
11	6		360	215	26.5	11	1.22
16.1	6	2F	360	215	26.5	11	1.22
19.1	6		360	215	26.5	11	1.22
11	6		325	190	26	8	1.46
16.1	6	3F-up	325	190	26	8	1.46
19.1	6		325	190	26	8	1.46
11	6		345	210	25.5	9.5	1.33
16.1	6	4F	345	210	25.5	9.5	1.33
19.1	6		345	210	25.5	9.5	1.33
11	6		345	215	25.5	9.5	1.36
16.1	6	5F	345	215	25.5	9.5	1.36
19.1	6		345	215	25.5	9.5	1.36

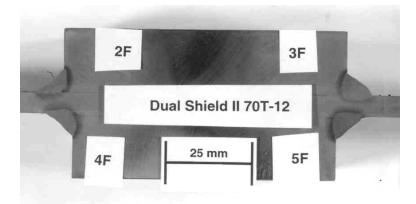


Figure 4.5: Weld Cross-sections for 6.4mm Pipe Wall X52 Simulations

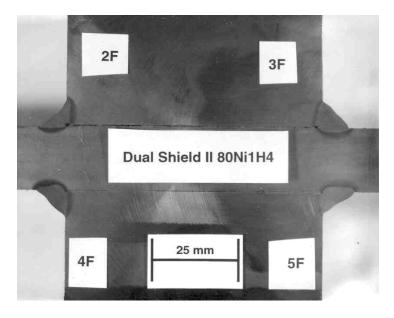


Figure 4.6: Cross-sections for 19mm Pipe Wall X80 Simulations

4.5 Task 3: Examination the Potential for Burn-Through for the Selected Processes

The objective of this task was to numerically predict the susceptibility of each welding process and procedure to burn-through over the entire range of practical heat inputs developed in Task 2. The primary factors determining the susceptibility to burn-through include the peak back surface temperature, depth of weld penetration and wall thickness, and pipeline operating pressure. Calculations based upon the "ASME B31G" formulation were used to determine the required operating pressure to cause a burn-through / bulging event with each of the welds deposited. The "ASME B31G" type calculations considered material with a peak temperature above 1000°C as a corrosion feature and applied a temperature based material strength reduction to the remaining ligament.

Bead on pipe welds were deposited over the range of pipe thicknesses evaluated (i.e. 3.2, 6.4, 7.9, 11, 16.1, and 19mm) for the X52 and X80 materials. The 3.2mm wall thickness was achieved by slotting a 6.4mm wall X52 pipe, using a 20mm wide square bottom machining mill cutter, as shown in **Figure 4.7**, for simulating welds on thin walled pipe. The 3.2mm thicknesses were verified in each region using an ultrasonic thickness gauge. Each intended weld zone was instrumented with K-type thermocouples along the centreline axis of the welds, on both the back surface of the pipe and in the weld. This method is effective in acquiring the actual thermal history at both the back surface and at the weld fusion line (as shown in **Figure 4.8**), compared to thermocouple plunging. The thermocouples were attached to a high speed temperature acquisition system at a collection frequency of 25Hz.

Figure 4.7: Slotted Pipe to Achieve 3.2mm Thickness

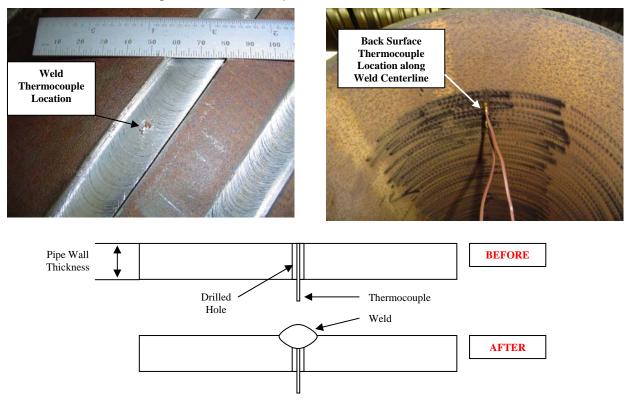


Figure 4.8: Thermocouple Set-up

All welding was initially performed in still air (no flow conditions) to simulate the worst case scenario for burn-through to occur, however the same welds were repeated at a later stage with water backing to determine if a higher heat sink capacity could extend the safety envelope for in-service welding with the alternative welding processes.

4.5.1 <u>Weld Burn-through – Static Air (No Flow)</u>

After fine tuning the welding procedures developed in Task 2, a series of bead on pipe welds were deposited using mechanized travel to achieve the predetermined heat input level, examples of welding with both wire fed and SMAW processes are shown in **Figures 4.9** and **4.10**, respectively.

Figure 4.9: Set-up for Controlled Welding with Semi-Automatic Processes

Figure 4.10: Set-up for Controlled Welding with SMAW Process

All welding data for bead on pipe welds for static air (no flow) conditions is shown in **Appendix C**. The thermocouple data was acquired at a scanning frequency of 25Hz. The thermocouple ID number is the same as the weld number. An example of the typical thermal history plots showing both weld and back surface temperature histories are shown in **Figure 4.11** and **4.12**, for welds A62 and A63, respectively. Note the increase in peak back surface temperature and as well as the longer weld cooling rate with increasing the heat input from 0.53kJ/mm to 1.29kJ/mm.

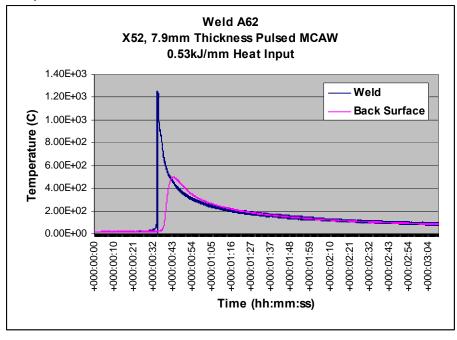


Figure 4.11: Thermal History of Weld and Back Surface

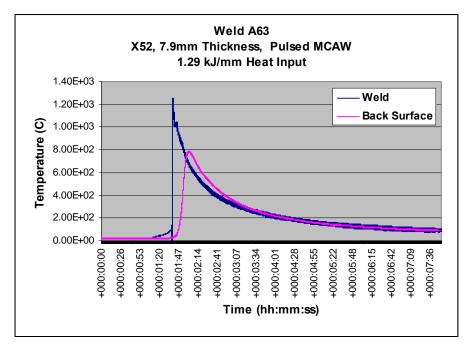


Figure 4.12: Thermal History of Weld and Back Surface

Each of peak back surface temperature measurements was plotted vs. welding process for heat inputs of .53 and 1.29 kJ/mm, and are shown in **Figure 4.13**. This data shows that for a given heat input, the PMCAW provides the greatest peak back surface temperature, followed by the GSFCAW, PGMAW, and SMAW process. The self shielded FCAW process demonstrates the highest peak back surface temperatures at the 1.29 kJ/mm level.

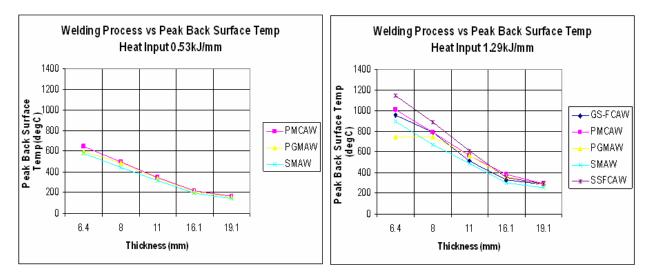


Figure 4.13: Peak Back Surface Temperatures vs. Heat Input and Process

Welds were cross-sectioned to measure the depths of penetration and to determine the remaining base metal ligament thickness between the root of the weld and the back surface of the pipe. Sample weld cross-sections for welds A62 and A63 using the P-MCAW process on 7.9mm X52 pipe at heat inputs of 0.53 kJ/mm and 1.29 kJ/mm, are shown in **Figures 4.14** and **4.15**, respectively. All remaining bead on pipe weld cross-sections for static air conditions are shown in **Appendix D**.

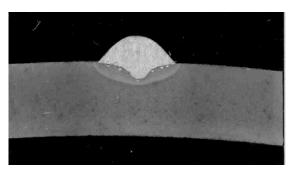


Figure 4.14: Weld A62 Macro, 0.53 kJ/mm, 2.5X Mag

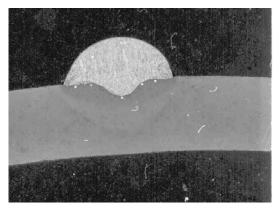


Figure 4.15: Weld A63 Macro, 1.29 kJ/mm, 2.5X Mag.

Since the weld temperature history of the weld fusion line and back surface were obtained, the thermal transients between these two regions could therefore be interpolated. This thermal history, along with the weld travel speed, was used to estimate a flaw size based on a zero strength at 1000°C temperature limit correlation, as calculated in **Figure 4.16**.

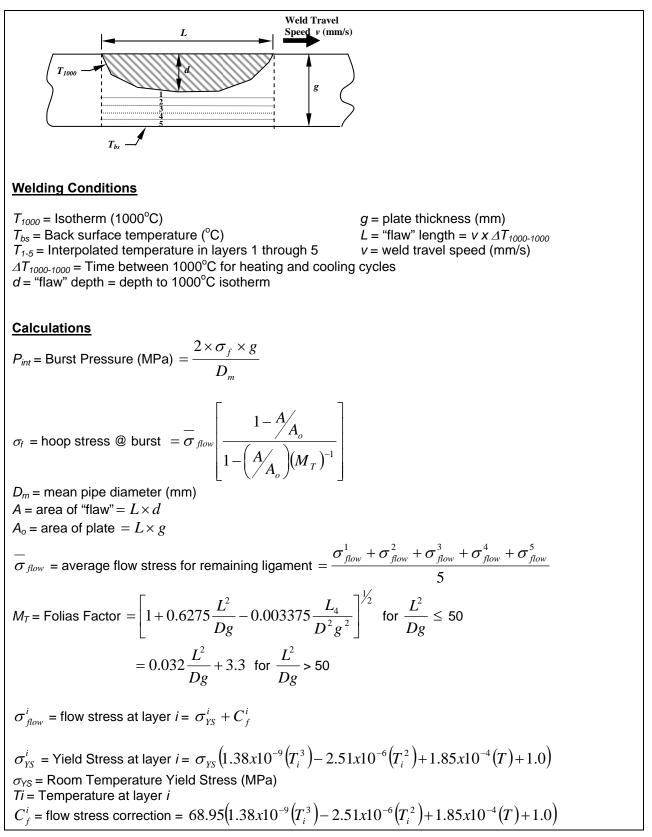


Figure 4.16: Methodology and Calculations for Determining Burn-through

The results of the burn-through calculations are presented in Tables 4.8 and 4.9 where the information can be plotted as Burst Pressure over Maximum Operating Pressure (MOP = 72% pipe yield pressure). Note that the values in red are for welds where the back surface temperature (ID of pipe) during welding reached at least 1000°C and that the effective flow stresses to cause a burst event is essentially any pressure over 0 Mpa. This data can be used to estimate the susceptibility to burn-through with each welding process over a range of heat inputs and material thicknesses, at a given percentage of MOP, as shown in Figures 4.17 and 4.18, where any value below each curve for a given welding process is considered a safe region. In the examples shown, these curves illustrate that as heat input increases from 0.53 to 1.29 kJ/mm, the arc efficiency of the process has a greater influence on heat transfer, depth of penetration, and the susceptibility to burn-through. For example, the FCAW and P-GMAW processes have theoretically higher arc efficiencies (i.e., transfer heat from the arc to the base metal more efficiently) when compared to the SMAW process, and are therefore more susceptible to burn-through at a given heat input. As heat input increases from 0.53 kJ/mm to 1.29 kJ/mm, the arc efficiency characteristics become more apparent as demonstrated by the increasing separation of their curves with increasing heat input. This is consistent with what was illustrated previously in the peak back surface temperature plot in Figure 4.13. Figure 4.19 illustrates the results of both the combined 0.53 and 1.29 kJ/mm heat inputs.

Because these burst pressure values are presented in non-dimensional form, ratio of burst pressure to maximum operating pressure (MOP), the results may be used to consider a range of pipe material grades and geometries.

Table 4.8: Burst Pressure Calculations

Test ID Surface Temp	Temperature	Yield Stress	Flow Stress Correction	Flow Stress		L^2/(Dt) Folias Factor Flaw Area Plate Area H	oop Stress Internal Pressure
0	1 2 3 4	5 0 1 2 3 4 5		5 0 1 2 3 4 5	Flow Stress Depth		@ Burst @ Burst
oC oC A1 938.5 1000	oC oC oC oC 993.85 981.55 969.25 956.95	oC (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 944.65 0.00 25.53 29.42 33.50 37.79 42.26		MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 6.77 0.00 29.62 34.13 38.87 43.84 49.04	(MPa) (mm) (mm) 39.10 16.51 2.94	0.26 1.08 48.49 52.83	(MPa) (MPa) 21.48 0.43
A1 930.5 1000 A2 1227.1 1000		1204.39 0.00 17.24 6.73 -0.38 -3.76 -3.09		-0.49 0.00 20.00 7.81 -0.44 -4.37 -3.58	0.00 17.92 4.86	0.31 1.09 87.02 57.34	0.00 0.00
A3 1255.3 1000		1229.77 0.00 16.50 5.14 -1.84 -3.99 -0.82		-0.13 0.00 19.14 5.97 -2.14 -4.63 -0.95	0.00 20.00 4.29	0.39 1.11 85.69 63.99	0.00 0.00
A4 486.6 1000	948.66 845.98 743.3 640.62	537.94 0.00 38.23 78.92 128.05 182.01 237.17	0.0 6.54 13.49 21.89 31.11 4	40.54 0.00 44.77 92.42 149.94 213.12 277.72	155.59 5.03 3.82	0.01 1.00 19.18 32.17	155.04 3.96
A5 587.1 1000		628.39 0.00 34.84 65.94 103.18 144.69 188.59		32.24 0.00 40.80 77.21 120.82 169.43 220.82		0.00 1.00 14.47 22.80	125.55 3.20
A6 655.7 1000		690.13 0.00 32.59 57.54 87.09 120.15 155.62		26.60 0.00 38.16 67.38 101.98 140.68 182.22		0.00 1.00 10.02 14.55	105.97 2.70
A7 908 1000 A8 579.6 1000		917.2 0.00 24.82 30.41 36.42 42.82 49.59 621.64 0.00 35.09 66.88 104.99 147.43 192.22		8.48 0.00 29.06 35.61 42.64 50.14 58.06 32.86 0.00 41.09 78.31 122.94 172.64 225.08	43.10 10.33 5.66 128.01 5.20 4.25	0.03 1.01 58.45 66.11 0.01 1.00 22.09 33.27	40.01 1.02 127.36 3.25
A9 898.1 1000		908.29 0.00 25.11 31.35 38.10 45.32 52.99		9.06 0.00 29.40 36.71 44.61 53.07 62.05		0.03 1.01 55.10 62.49	42.31 1.08
A10 446.7 1000		502.03 0.00 42.25 89.91 147.49 210.18 273.16		43.77 0.00 49.03 104.31 171.13 243.87 316.93		0.00 1.00 1.65 2.93	177.05 8.85
A11 671.5 1000		704.35 0.00 34.22 59.38 89.07 122.29 158.03		25.32 0.00 39.71 68.89 103.34 141.88 183.35		0.01 1.00 20.89 30.88	107.02 5.35
A14 315 1000		383.5 0.00 56.18 130.30 219.38 312.53 398.87		53.76 0.00 63.75 147.86 248.94 354.65 452.62		0.00 1.00 12.87 25.43	253.52 6.18
A15 486.1 1000		537.49 0.00 48.52 100.19 162.58 231.10 301.13	0.0 0.01 10.00 21.01 01.11	40.58 0.00 55.06 113.69 184.49 262.24 341.71	101.11 11.10 0.20	0.01 1.00 73.71 129.71	190.36 4.64
A16 195.7 1000 A17 304 1000		276.13 0.00 71.75 177.24 302.14 425.96 528.23 373.6 0.00 65.86 153.71 259.20 369.04 469.98		61.28 0.00 80.08 197.80 337.19 475.38 589.51 54.52 0.00 73.50 171.54 289.27 411.85 524.50		0.00 1.00 27.49 62.98 0.00 1.00 27.09 56.43	335.93 8.98 294.08 7.87
A17 304 1000 A18 139.4 1000		225.46 0.00 77.32 195.96 335.00 468.54 570.66		54.52 0.00 73.50 171.54 269.27 411.65 524.50 54.12 0.00 86.01 217.98 372.65 521.19 634.78		0.00 1.00 27.09 58.43	294.00 7.07 366.35 13.96
A19 257.8 1000		332.02 0.00 70.57 168.96 286.49 406.56 512.55		57.59 0.00 78.50 187.94 318.68 452.25 570.14		0.00 1.00 42.54 92.66	321.40 12.25
A20 589.4 1000		630.46 0.00 37.08 70.03 109.47 153.45 199.97		32.05 0.00 43.03 81.25 127.02 178.04 232.02		0.12 1.04 23.65 34.99	123.44 2.46
A21 915 1000		923.5 0.00 26.26 31.73 37.59 43.81 50.38		8.07 0.00 30.46 36.82 43.62 50.83 58.45		0.35 1.10 56.84 60.96	19.14 0.38
A22 1232.2 1000				-0.45 0.00 19.85 7.47 -0.78 -4.48 -3.22	0.00 22.82 4.04	0.50 1.15 92.21 73.02	0.00 0.00
A23 601.3 1000		641.17 0.00 34.37 64.17 99.79 139.53 181.71		31.06 0.00 40.25 75.14 116.85 163.39 212.78		0.01 1.00 26.76 38.39	120.72 3.08
A24 864.7 1000 A25 694.1 1000		878.23 0.00 26.10 34.61 43.99 54.16 65.06 724.69 0.00 33.45 56.55 83.68 114.02 146.75		11.12 0.00 30.56 40.53 51.50 63.42 76.19 23.52 0.00 38.81 65.62 97.09 132.29 170.27	52.44 13.76 5.58 100.82 8.99 2.20	0.06 1.02 76.73 88.07 0.08 1.02 19.76 28.77	46.81 1.19 95.86 1.91
A25 694.1 1000 A26 997.2 1000		724.89 0.00 33.45 56.55 63.86 114.02 146.75 997.48 0.00 23.75 23.92 24.08 24.25 24.42		23.52 0.00 38.81 65.62 97.09 132.29 170.27 3.91 0.00 27.55 27.75 27.94 28.14 28.34		0.08 1.02 19.76 28.77	2.60 0.05
A27 1136.4 1000		1122.76 0.00 19.72 12.64 6.72 2.02 -1.38		-0.22 0.00 22.88 14.67 7.80 2.35 -1.60		0.35 1.11 75.60 61.24	0.00 0.00
A28 597.3 1000		637.57 0.00 34.50 64.67 100.74 140.98 183.65		31.39 0.00 40.40 75.72 117.96 165.08 215.04		0.02 1.01 29.35 48.58	121.82 3.11
A29 747.3 1000		772.57 0.00 29.68 46.97 66.98 89.26 113.40		19.38 0.00 34.75 55.00 78.43 104.52 132.78		0.00 1.00 15.28 22.22	80.89 2.06
A30 486.1 1000		537.49 0.00 40.80 84.26 136.73 194.34 253.24		40.58 0.00 47.34 97.76 158.64 225.49 293.82		0.00 1.00 3.78 6.52	164.59 8.23
A31 746.7 1000		772.03 0.00 31.68 50.18 71.58 95.42 121.24		19.43 0.00 36.75 58.22 83.05 110.71 140.67	85.88 2.57 5.56	0.00 1.00 14.27 20.27	85.72 4.28
A32 341.5 1000 A33 564.6 1000		407.35 0.00 54.97 125.48 210.41 300.08 384.80 608.14 0.00 45.14 87.24 137.78 193.98 253.04		51.86 0.00 62.38 142.39 238.77 340.52 436.66 34.10 0.00 51.23 98.99 156.35 220.13 287.14		0.00 1.00 10.70 20.95 0.00 1.00 8.41 14.39	244.12 5.95 162.76 3.97
A34 214.5 1000		293.05 0.00 70.72 173.09 294.67 416.37 519.10		50.22 0.00 78.92 193.17 328.86 464.67 579.32		0.00 1.00 33.70 74.63	328.89 8.80
A35 359.6 1000			0.00 0.20 20.00 01.10 10.00 0	50.53 0.00 70.20 158.46 264.89 377.94 486.08		0.00 1.00 34.87 72.38	271.43 7.26
A36 158.4 1000	915.84 747.52 579.2 410.88	242.56 0.00 76.22 191.56 327.24 459.01 562.65	0.0 8.56 21.52 36.77 51.57 6	53.22 0.00 84.79 213.09 364.00 510.58 625.87	359.67 2.44 7.88	0.00 1.00 19.26 46.45	359.64 13.71
A37 286.8 1000		358.12 0.00 68.95 162.50 274.63 390.60 495.67		55.69 0.00 76.70 180.76 305.49 434.49 551.36		0.00 1.00 48.88 107.62	309.62 11.80
A38 1049.1 1000		1044.19 0.00 20.82 18.20 15.71 13.35 11.13		1.90 0.00 24.38 21.31 18.39 15.63 13.03		0.39 1.12 245.23 227.79	0.00 0.00
A39 1143.3 1000 A40 808 1000		1128.97 0.00 18.30 11.39 5.68 1.24 -1.84 827.2 0.00 29.66 43.10 58.31 75.08 93.21		-0.31 0.00 21.43 13.34 6.65 1.45 -2.15 14.94 0.00 34.41 50.01 67.65 87.11 108.15	0.00 35.06 7.85 69.47 5.33 6.64	0.38 1.11 275.06 224.36 0.01 1.00 35.40 42.14	0.00 0.00 68.22 3.41
A40 806 1000		902.62 0.00 26.98 34.09 41.80 50.08 58.88		9.44 0.00 31.30 39.55 48.50 58.10 68.32	69.47 5.33 6.64 49.16 3.98 7.21	0.01 1.00 35.40 42.14	48.19 2.41
A44 609.2 1000		648.28 0.00 43.27 80.15 124.19 173.36 225.64	0.00 4.02 0.40 0.10 0.00	30.41 0.00 49.10 90.95 140.93 196.72 256.05	146.75 5.82 8.06	0.00 1.00 46.92 64.03	146.33 3.56
	0 978.47 935.41 892.35 849.29	806.23 0.00 36.17 54.39 75.20 98.25 123.21	0.0 4.88 7.33 10.13 13.24 1	16.61 0.00 41.05 61.72 85.33 111.49 139.82	87.88 20.60 8.84	0.04 1.01 182.08 226.60	83.45 2.03
A46 357.3 1000		421.57 0.00 63.02 142.47 238.25 339.92 437.03		50.70 0.00 70.33 159.00 265.89 379.36 487.73		0.03 1.01 209.44 360.62	269.51 7.21
A47 498.5 1000		548.65 0.00 55.74 113.97 184.25 261.60 341.07	0.0 0.11 10.22 21.01 00.00 0	39.57 0.00 62.20 127.19 205.62 291.95 380.64		0.04 1.01 284.29 441.74	209.06 5.59
A48 297.3 1000 A49 407.4 1000		367.57 0.00 68.37 160.18 270.35 384.77 489.34 466.66 0.00 62.36 136.43 225.91 322.34 417.27		54.98 0.00 76.05 178.18 300.72 428.00 544.32 46.88 0.00 69.37 151.76 251.29 358.56 464.15		0.01 1.00 124.53 224.73 0.00 1.00 77.28 133.28	304.60 11.61
A49 407.4 1000 A50 799.1 1000		466.66 0.00 62.36 136.43 225.91 322.34 417.27 819.19 0.00 28.08 41.35 56.41 73.06 91.08		46.88 0.00 69.37 151.76 251.29 358.56 464.15 15.57 0.00 32.88 48.41 66.06 85.55 106.64		0.00 1.00 77.28 133.28 0.01 1.00 28.04 36.96	258.74 9.86 67.23 1.72
A51 957.8 1000		962.02 0.00 23.38 25.84 28.39 31.03 33.75		5.77 0.00 27.38 30.25 33.24 36.33 39.52	33.34 26.15 5.96	0.21 1.06 155.88 167.33	18.35 0.47
A52 716.5 1000		744.85 0.00 32.69 53.80 78.45 105.98 135.75		21.76 0.00 37.93 62.43 91.02 122.97 157.51		0.02 1.01 38.10 55.13	93.18 4.72
A53 790.1 1000		811.09 0.00 30.24 45.13 62.08 80.86 101.18	0.0 4.85 7.23 9.95 12.96 1	16.21 0.00 35.09 52.36 72.03 93.81 117.39		0.01 1.00 32.72 44.43	73.38 3.72
A54 514.7 1000		563.23 0.00 47.28 95.40 153.43 217.49 283.70		38.23 0.00 53.65 108.26 174.11 246.80 321.93		0.13 1.04 228.29 395.44	172.02 4.19
A55 748.1 1000		773.29 0.00 37.61 59.47 84.74 112.89 143.38		19.32 0.00 42.68 67.48 96.16 128.11 162.71		0.10 1.03 247.19 348.13	92.66 2.26
A56 333.8 1000 A57 453.9 1000		400.42 0.00 64.27 147.40 247.46 352.83 451.84 508.51 0.00 58.00 122.76 201.01 286.35 372.35		52.42 0.00 71.72 164.49 276.17 393.76 504.26 43.20 0.00 64.73 137.00 224.33 319.57 415.55		0.03 1.01 186.99 394.35 0.03 1.01 212.26 412.21	279.70 7.48 229.72 6.14
A57 453.9 1000 A58 284.1 1000		355.69 0.00 69.10 163.10 275.74 392.10 497.27		43.20 0.00 64.73 137.00 224.33 319.57 415.55 55.87 0.00 76.86 181.42 306.72 436.16 553.15		0.03 1.01 212.26 412.21	310.75 11.91
A59 379.8 1000		441.82 0.00 63.85 142.28 236.94 338.14 436.18		49.01 0.00 71.02 158.26 263.56 376.13 485.19		0.04 1.01 250.01 520.72	267.91 10.27
A60 649.2 1000		684.28 0.00 32.80 58.32 88.58 122.43 158.71		27.13 0.00 38.41 68.29 103.72 143.35 185.84		0.01 1.00 29.48 42.27	106.89 2.73
A61 1008.1 1000		1007.29 0.00 21.96 21.51 21.06 20.62 20.18		3.45 0.00 25.71 25.18 24.66 24.14 23.63		0.09 1.03 111.10 109.81	0.00 0.00
A62 499.4 1000		549.46 0.00 40.32 82.38 133.14 189.01 246.44		39.49 0.00 46.78 95.58 154.47 219.31 285.93		0.01 1.00 29.99 49.31	159.28 8.07
A63 789.8 1000		810.82 0.00 30.25 45.16 62.15 80.95 101.31		16.24 0.00 35.10 52.40 72.11 93.93 117.55		0.08 1.03 89.17 116.64	68.69 3.48
A64 342.6 1000 A65 561.6 1000		408.34 0.00 54.92 125.28 210.04 299.56 384.21 605.44 0.00 45.27 87.72 138.71 195.39 254.89		51.78 0.00 62.32 142.17 238.35 339.93 435.99 34.35 0.00 51.37 99.54 157.41 221.72 289.24		0.01 1.00 51.30 99.28 0.00 1.00 36.44 60.63	243.09 5.92 163.62 3.99
A66 216.1 1000		294.49 0.00 70.63 172.74 294.04 415.54 518.30		54.35 0.00 51.37 99.54 157.41 221.72 269.24 50.13 0.00 78.82 192.78 328.15 463.75 578.43		0.00 1.00 36.44 60.63 0.00 1.00 49.05 106.32	328.19 8.78
A67 380.5 1000				48.96 0.00 68.97 153.63 255.80 365.06 470.96		0.01 1.00 126.49 246.18	261.86 7.00
A68 164.7 1000		248.23 0.00 75.86 190.11 324.66 455.81 559.88		52.91 0.00 84.38 211.47 361.14 507.03 622.79		0.00 1.00 46.73 109.32	357.22 13.69
A69 295 1000) 929.5 788.5 647.5 506.5	365.5 0.00 68.49 160.69 271.29 386.05 490.73	0.0 7.70 18.05 30.48 43.38 5			0.01 1.00 111.31 237.72	305.73 11.72

Table 4.9: Weld Data and Burst Pressure Results

Weld	Process	Dia	Electrode	Amps		s TS	HI	Weld Pentration Depth	Pipe Details	Thickness	Pipe Diameter	Yield Strength (initial)	Max. Back Surface Temp	Fusion Line Time 1000oC - 1000oC	Calculated Bursting Pressure	Burst P/ Yield Pressure	Burst P/ MOP
		(mm)		(A)	(V)	ipm		(mm)		(mm)	(mm)		(degC)				
A1	SMAW	2.4	718MC	90	21	13.0		0.8	NPS 12, X52	3.2	324	430.25	938.5	3	0.43	0.04993	0.0359
A2	SMAW	2.4	718MC	90	21	8.5	0.53	1.21	NPS 12, X52	3.2	324	430.25	1227.1 1255.3	4.98	0.00	0.00000	-
A3 A4	SMAW	2.4	718MC	90	21	6.0	0.74	2.16	NPS 12, X52	3.2	324 508	430.25 403.36		7.83	0.00 3.96	0.00000	- 0.2767
A4 A5	SMAW SMAW	2.4	718MC 718MC	90 90	21	12.5	0.35	1.3	NPS 20, X52 NPS 20, X52	6.4 6.4	508	403.36	486.6	0.95	3.20	0.38437 0.31126	0.2767
A6	SMAW	2.4	718MC	90	21	6.0	0.55	1.51	NPS 20, X52	6.4	508	403.36	655.7	0.89	2.70	0.26271	0.2241
A7	SMAW	2.4	718MC	90	21	3.5	1.29	1.63	NPS 20, X52	6.4	508	403.36	908	7.05	1.02	0.09918	0.0714
A8	SMAW	3.2	718MC	120	20.5			1.69	NPS 20, X52	6.4	508	403.36	579.6	1.12	3.25	0.31575	0.2273
A9	SMAW	3.2	718MC	120	20.5			1.93	NPS 20, X52	6.4	508	403.36	898.1	5.12	1.08	0.10489	0.0755
A10	SMAW	3.2	718MC	120	20.5			1.32	NPS 12, X52	7.9	324	430.25	446.7	0.08	8.85	0.41150	0.2963
A11	SMAW	3.2	718MC	120	20.5			1.45	NPS 12, X52	7.9	324	430.25	671.5	2.05	5.35	0.24873	0.1791
A14	SMAW		AtomArc 10018-M1	120	20	10.5	0.53	1.6	NPS36, X70	11	914	511.61	315	0.52	6.18	0.49554	0.3568
A15	SMAW	3.2	AtomArc 10018-M1	120	20	4.5	1.29	1.63	NPS36, X70	11	914	511.61	486.1	6.19	4.64	0.37208	0.2679
A16	SMAW	3.2	AtomArc 10018-M1	120	20	10.5	0.53	1.39	NPS 48, X80	16.1	1220	594.35	195.7	0.88	8.98	0.56520	0.4069
A17	SMAW	3.2	AtomArc 10018-M1	120	20	4.5	1.29	1.715	NPS 48, X80	16.1	1220	594.35	304	1.84	7.87	0.49479	0.3562
A18	SMAW	3.2	AtomArc 10018-M1	120	20	10.5	0.53	1.43	NPS 40, X70	19	1016	613.66	139.4	1.44	13.96	0.59699	0.4298
A19	SMAW	3.2	AtomArc 10018-M1	120	20	4.5		1.8	NPS 40, X70	19	1016	613.66	257.8	2.56	12.25	0.52374	0.3771
A20	GMAW - RMD		K-NOVA	130	17	27.5		0.9	NPS 12, X52	3.2	324	430.25	589.4	0.94	2.46	0.28690	0.2066
A21	GMAW - RMD		K-NOVA	130	17	15.0		1.71	NPS 12, X52	3.2	324	430.25	915	3	0.38	0.04450	0.0320
A22	GMAW - RMD	-	K-NOVA	130	17	10.0		2.23	NPS 12, X52	3.2	324	430.25	1232.2	5.39	0.00	0.00000	-
A23	GMAW - RMD		K-NOVA	170	17	13.0		2.03	NPS 20, X52	6.4	508	403.36	601.3	1.09	3.08	0.29929	0.2155
A24	GMAW - RMD		K-NOVA	170	17	5.5	1.29	2.53	NPS 20, X52	6.4	508	403.36	864.7	5.91	1.19	0.11605	0.0836
A25	P-GMAW	0.9	K-NOVA	70	18	15.5		0.56	NPS 12, X52	3.2	324	430.25	694.1	1.37	1.91	0.22280	0.1604
A26 A27	P-GMAW P-GMAW	0.9	K-NOVA K-NOVA	70 70	18 18	8.5 5.5	0.35	1.04	NPS 12, X52	3.2	324 324	430.25 430.25	997.2 1136.4	3.15 8.22	0.05	0.00605	0.0044
A27 A28	P-GMAW	0.9	K-NOVA	70	18	5.5	0.53	0.72	NPS 12, X52 NPS 20, X52	3.2 6.4	508	403.36	597.3	3.26	3.11	0.30201	0.2174
A20 A29	P-GMAW	0.9	K-NOVA	70	18	2.5	1.29	0.45	NPS 20, X52	6.4	508	403.36	747.3	3.28	2.06	0.20054	0.1444
A30	P-GMAW	0.9	K-NOVA	90	19	7.5	0.53	1.34	NPS 12, X52	7.9	324	430.25	486.1	0.26	8.23	0.38255	0.2754
A31	P-GMAW	0.9	K-NOVA	90	19		1.29	0.95	NPS 12, X52	7.9	324	430.25	746.7	2.02	4.28	0.19923	0.1434
A32	P-GMAW	0.9	ER70XTi	90	19	7.5		1.53	NPS36, X70	11	914	511.61	341.5	0.6	5.95	0.47715	0.3435
A33	P-GMAW	0.9	ER70XTi	90	19	3.0	1.29	1.18	NPS36, X70	11	914	511.61	564.6	1.03	3.97	0.31813	0.2291
A34	P-GMAW	0.9	ER70XTi	90	19	7.5		1.65	NPS 48, X80	16.1	1220	594.35	214.5	1.46	8.80	0.55337	0.3984
A35	P-GMAW	0.9	ER70XTi	90	19	3.0	1.29	1.24	NPS 48, X80	16.1	1220	594.35	359.6	3.54	7.26	0.45669	0.3288
A36	P-GMAW	0.9	ER70XTi	90	19	7.5	0.53	1.27	NPS 40, X70	19	1016	613.66	158.4	0.77	13.71	0.58607	0.4220
A37	P-GMAW	0.9	ER70XTi	90	19	3.0	1.29	1.36	NPS 40, X70	19	1016	613.66	286.8	4.46	11.80	0.50456	0.3633
A38	SS-FCAW	2.0	FABSHIELD 71K6	200	18	8.0	1.06	1.9	NPS 20, X52	6.4	508	403.36	1049.1	10.48	0.00	0.00000	-
A39	SS-FCAW	2.0	FABSHIELD 71K6	200	18	6.5	1.29	2.8	NPS 20, X52	6.4	508	403.36	1143.3	12.74	0.00	0.00000	-
A40	SS-FCAW		FABSHIELD 71K6	280	19	12.0		3.35	NPS 12, X52	7.9	324	430.25	808	1.05	3.41	0.15856	0.1142
A41	SS-FCAW		FABSHIELD 71K6	280	19	9.5	1.29	4	NPS 12, X52	7.9	324	430.25	891.8	0.99	2.41	0.11200	0.0806
A44	SS-FCAW		FABSHIELD 81N2	310	19	11.0		4.3	NPS36, X70	11	914	511.61	609.2	1.25	3.56	0.28601	0.2059
A45	SS-FCAW	-	FABSHIELD 81N2	310	19	7.0	1.99	3.82	NPS36, X70	11	914	511.61	784.7	6.96	2.03	0.16312	0.1174
A46	SS-FCAW		FABSHIELD 81N2		19	11.0		4.1	NPS 48, X80	16.1	1220	594.35	357.3	4.81	7.21	0.45345	0.3265
A47	SS-FCAW		FABSHIELD 81N2	310	19	7.0		4.64	NPS 48, X80	16.1	1220	594.35	498.5	9.27	5.59	0.35175	0.2533
A48 A49	SS-FCAW SS-FCAW	2.0	FABSHIELD 81N2 FABSHIELD 81N2	310 310	19 19	11.0 7.0		4.5	NPS 40, X70 NPS 40, X70	19	1016	613.66 613.66	297.3	2.54	<u> </u>	0.49636	0.3574
A49 A50	GS-FCAW	1.2	DS II 71T-12	200	25.5			4.28	NPS 40, X70 NPS 20, X52	19 6.4	508	403.36	407.4	1.24	1.72	0.42164	0.3036
A50 A51	GS-FCAW	1.2	DS II 711-12 DS II 71T-12	175	25.5			0.775	NPS 20, X52	6.4	508	403.36	957.8	7.72	0.47	0.04549	0.1200
A52	GS-FCAW	1.2	DS II 711-12	200	24.5		-	1.17	NPS 12, X52	8	324	430.25	716.5	1.48	4.72	0.21658	0.1559
A53	GS-FCAW	1.2	DS II 711-12	175	24.5			0.87	NPS 12, X52	8	324	430.25	790.1	1.64	3.72	0.17054	0.1228
A54	GS-FCAW	1.2	DSII 80T1-Ni1	225		11.00		1.56	NPS36, X70	11	914	511.61	514.7	7.72	4.19	0.33623	0.2421
A55	GS-FCAW	1.2	DSII 80T1-Ni1	225		7.00		1.48	NPS36, X70	11	914	511.61	748.1	10.68	2.26	0.18111	0.1304
A56	GS-FCAW	1.2	DSII 80T1-Ni1	225		11.00		1.28	NPS 48, X80	16.1	1220	594.35	333.8	5.26	7.48	0.47060	0.3388
A57	GS-FCAW	1.2	DSII 80T1-Ni1	225			1.99	1.14	NPS 48, X80	16.1	1220	594.35	453.9	8.64	6.14	0.38651	0.2783
A58	GS-FCAW	1.2	DSII 80T1-Ni1	225			1.29	1.655	NPS 40, X70	19.1	1016	613.66	284.1	1.08	11.91	0.50640	0.3646
A59	GS-FCAW	1.2	DSII 80T1-Ni1	225			1.99	1.165	NPS 40, X70	19.1	1016	613.66	379.8	9.2	10.27	0.43659	0.3143
A60	MCAW	1.2	MC70	140			0.52	1.705	NPS 20, X52	6.4	508	403.36	649.2	1.2	2.73	0.26501	0.1908
A61	MCAW	1.2	MC70	140			1.29	1.835	NPS 20, X52	6.4	508	403.36	1008.1	7.72	0.00	0.00000	-
A62	MCAW	1.2	MC70	140			0.52	1.735	NPS 12, X52	8	324	430.25	499.4	1.12	8.07	0.37021	0.2666
A63	MCAW	1.2	MC70	140			1.29	1.635	NPS 12, X52	8	324	430.25	789.8	6.56	3.48	0.15966	0.1150
A64	MCAW	1.2	MC100				0.52	1.64	NPS36, X70	11	914	511.61	342.6	1.64	5.92	0.47515	0.3421
A65	MCAW	1.2	MC100				1.29	1.605	NPS36, X70	11	914	511.61	561.6	2.48	3.99	0.31982	0.2303
A66	MCAW	1.2	MC100	140			0.52	1.895	NPS 48, X80	16.1	1220	594.35	216.1	1.2	8.78	0.55218	0.3976
A67	MCAW	1.2	MC100	140			1.29	1.955	NPS 48, X80	16.1	1220	594.35	380.5	6.88	7.00	0.44058	0.3172
A68	MCAW	1.2	MC100				0.52	1.62	NPS 40, X70	19.1	1016	613.66	164.7	1.04	13.69	0.58212	0.4191
A69	MCAW	1.2	MC100	140	20.5	5.25	1.29	1.74	NPS 40, X70	19.1	1016	613.66	295	5.6	11.72	0.49821	0.3587

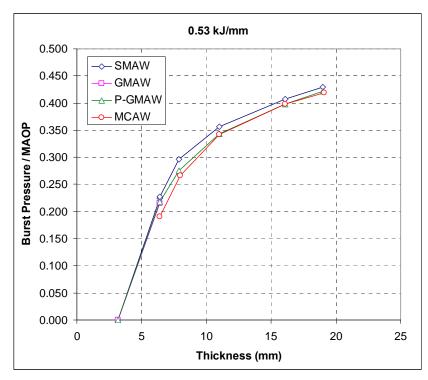


Figure 4.17: Burst Pressure/MOP (%) vs. Thickness and Weld Process – 0.53kJ/mm

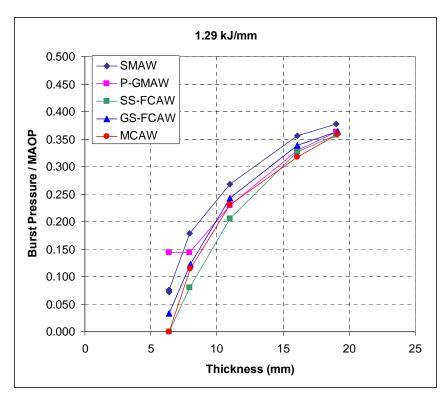
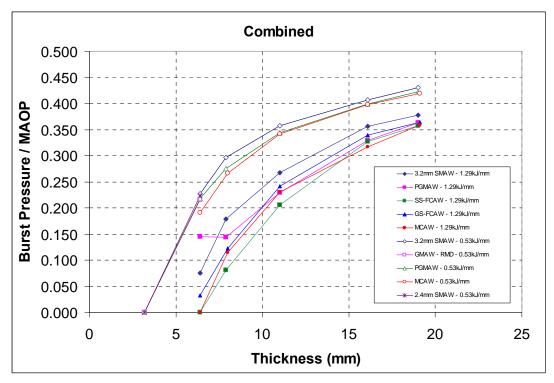



Figure 4.18: Burst Pressure/MOP (%) vs. Thickness and Weld Process - 1.29kJ/mm

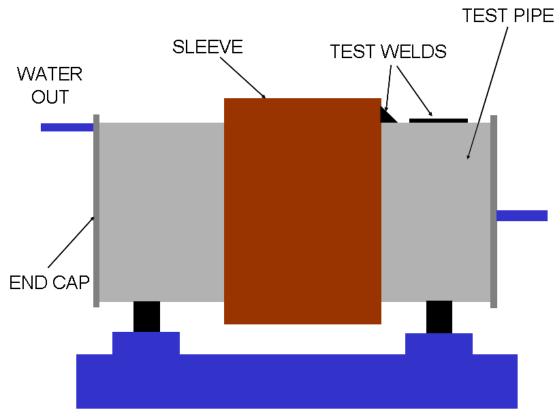
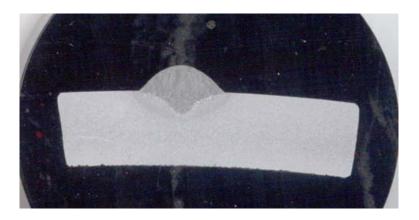


Figure 4.19: Burst Pressure/MOP (%) vs. Thickness and Weld Process, Combined Heat Inputs

4.5.2 <u>Water Backed Burn-through Predictions</u>


Although outside the scope of the original work plan, welds for static air deposited in the 6.4, 8, and 11mm thicknesses were reproduced with water backed conditions. This task was investigated to determine if the water backing would provide sufficient heat sink capacity to extend the limits of in-service welding. The set-up for welding with water backing for both bead on pipe and for fillet welding of sleeves is illustrated in **Figure 4.20**. It should be noted that the burn-through calculations are only based on the bead on pipe data and not for fillet welds.

All welding data for bead on pipe welds deposited with water backing is shown in **Appendix E**. The thermocouple data was acquired at a scanning frequency of 25Hz. The thermocouple ID number is the same as the weld number. An example of the typical thermal history plots showing both weld and back surface temperature histories are shown in **Figure 4.21** and **4.22**, for welds FW62 and FW63, respectively. All remaining bead on pipe weld cross-sections for water backed conditions are shown in **Appendix F**.

TURNING ROLLS

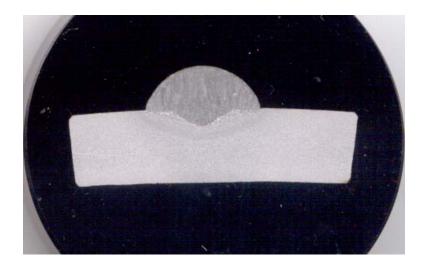


Figure 4.22: Weld FW63 Macro, 1.29 kJ/mm, 2.5X Mag.

The results of the burn-through calculations for water backed conditions are presented in **Tables 4.10** and **4.11** where the information can be plotted as Burst Pressure over Maximum Operating Pressure (MOP = 72% pipe yield pressure). Note that the values in red are for welds where the back surface temperature (ID of pipe) during welding reached at least 1000°C and that the effective flow stresses to cause a burst event is essentially any pressure over 0 Mpa. This data can be used to estimate the susceptibility to burn-through with each welding process over a range of heat inputs and material thicknesses, at a given percentage of MOP, as shown in **Figures 4.23** and **4.24**, where any value below each curve for a given welding process is considered a safe region. It should be noted that none of the welding procedures evaluated with water backing reached a peak back surface temperature of 1000°C, and therefore shows that the higher heat sink capacity of forced cooling provides a greater heat input window for safe in-service welding practice. **Figure 4.25** illustrates the results of both 0.53 and 1.29 kJ/mm heat inputs combined.

Table 4.10: Burst Pressure Calculations

Test ID St	urface Temp)	Tem	perature					Yield	d Stress				Flov	w Stres	s Corre	ction				Flow	Stress			Effective	Flaw Length	Effective Flaw	L^2/(Dt)	Folias Factor	Flaw Area	Plate Area	Hoop Stress	Internal Pressure
		0 1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	Flow Stress		Depth		Mt	A	Ao	@ Burst	@ Burst
	oC	oC oC	oC	oC	oC	oC	(MPa)) (MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(mm)	(mm)			(mm2)	(mm2)	(MPa)	(MPa)
FW4	482.6	1000 948.26	844.78	741.3	637.82	534.34	0.00	38.37	79.46	129.07	183.51	239.09	0.0	6.56	13.58	22.06	31.37	40.87	0.00	44.93	93.04	151.13	214.88	279.95	156.79	5.93	3.73	0.01	1.00	22.11	37.93	156.05	3.98
FW5	540	1000 954	862	770	678	586	0.00	36.42	71.93	114.67	162.04	211.43	0.0	6.23	12.30	19.60	27.70	36.14	0.00	42.64	84.22	134.27	189.74	247.58	139.69	5.18	3.99	0.01	1.00	20.65	33.16	139.10	3.55
FW6	600	1000 960	880	800	720	640	0.00	34.41	64.33	100.10	140.00	182.34	0.0	5.88	11.00	17.11	23.93	31.17	0.00	40.30	75.33	117.21	163.94	213.51	122.06	6.23	4.00	0.01	1.00	24.93	39.88	121.30	3.10
FW7	681.4	1000 968.14	904.42	840.7	776.98	713.26	0.00	31.77	54.50	81.28	111.23	143.50					19.01					95.17				4.63	4.36	0.01	1.00	20.19	29.63	98.46	2.51
FW8	657.9	1000 965.79	897.37	828.95	760.53	692.11	0.00	32.52	57.28	86.59	119.38	154.58	0.0	5.56	9.79	14.80	20.41	26.42	0.00	38.08	67.07	101.39	139.78	181.00	105.46	16.52	4.26	0.08	1.03	70.38	105.75	100.40	2.56
FW9	701.2	1000 970.12	910.36	850.6	790.84	731.08	0.00	31.13	52.20	76.89	104.49	134.29	0.0	5.32	8.92	13.14	17.86	22.96	0.00	36.46	61.12	90.03	122.35	157.25	93.44	2.59	4.67	0.00	1.00	12.12	16.60	93.28	2.38
FW10	531.9	1000 953.19	859.57	765.95	672.33	578.71	0.00	39.14	77.84	124.45	176.05	229.71	0.0	6.27	12.47	19.94	28.21	36.81	0.00	45.41	90.32	144.40	204.27	266.53	150.18	9.75	5.01	0.04	1.01	48.85	77.98	147.39	7.46
FW11	594	1000 959.4	878.2	797	715.8	634.6	0.00	36.92	69.42	108.30	151.66	197.60	0.0	5.92	11.12	17.36	24.30	31.67	0.00	42.84	80.54	125.65	175.97	229.26	130.85	8.49	5.54	0.03	1.01	46.97	67.89	128.37	6.50
FW12	510.4	1000 951.04	853.12	755.2	657.28	559.36	0.00	37.42	75.78	122.04	173.08	225.74	0.0	6.40	12.95	20.86	29.59	38.59	0.00	43.82	88.73	142.91	202.66	264.33	148.49	9.48	3.87	0.03	1.01	36.72	60.69	146.57	3.74
FW14	342.2	1000 934.22	802.66	671.1	539.54	407.98	0.00	54.94	125.36	6 210.18	8 299.75	384.43	0.0	7.40	16.89	28.33	40.40	51.81	0.00	62.34	142.25	238.50	340.14	436.23	243.89	8.22	5.69	0.01	1.00	46.77	90.46	243.35	5.93
FW15	465.6	1000 946.56	839.68	732.8	625.92	519.04	0.00	49.41	103.67	7 169.22	240.89	313.51	0.0	6.66	13.97	22.81	32.46	42.25	0.00	56.07	117.64	192.02	273.35	355.76	198.97	7.33	6.07	0.01	1.00	44.49	80.68	198.56	4.84
FW23	559.4	1000 955.94	867.82	779.7	691.58	603.46	0.00	35.76	69.44	109.90	154.86	202.02	0.0	6.11	11.87	18.79	26.47	34.53	0.00	41.88	81.31	128.69	181.33	236.56	133.95	11.45	4.10	0.04	1.01	46.99	73.26	131.04	3.34
FW24	770.2	1000 977.02	931.06	885.1	839.14	793.18	0.00	28.97	44.45	62.23	81.97	103.36	0.0	4.95	7.60	10.64	14.01	17.67	0.00	33.92	52.05	72.87	95.99	121.03	75.17	2.89	4.89	0.00	1.00	14.12	18.48	74.98	1.91
FW28	536.3	1000 953.63	860.89	768.15	675.41	582.67	0.00	36.54	72.41	115.58	163.41	213.23	0.0	6.25	12.38	19.76	27.93	36.45	0.00	42.79	84.78	135.34	191.35	249.68	140.79	4.10	3.99	0.01	1.00	16.37	26.23	140.41	3.58
FW29	752.2	1000 975.22	925.66	876.1	826.54	776.98	0.00	29.53	46.43	65.95	87.69	111.23	0.0	5.05	7.94	11.27	14.99	19.01	0.00	34.57	54.37	77.23	102.68	130.25	79.82	7.07	4.69	0.02	1.00	33.18	45.25	78.78	2.01
FW30	482.4	1000 948.24	844.72	741.2	637.68	534.16	0.00	40.94	84.78	137.73	195.83	255.13	0.0	6.56	13.59	22.07	31.38	40.89	0.00	47.50	98.37	159.80	227.21	296.01	165.78	6.51	4.67	0.02	1.01	30.39	52.07	164.61	8.33
FW31	755.6	1000 975.56	926.68	877.8	828.92	780.04	0.00	31.38	49.12	69.59	92.37	117.05	0.0	5.03	7.87	11.15	14.80	18.76	0.00	36.41	57.00	80.75	107.18	135.81	83.43	11.43	5.79	0.05	1.02	66.15	91.44	80.19	4.06
FW32	311.9	1000 931.19	793.57	655.95	518.33	380.71	0.00	56.32	130.86	6 220.43	313.98	400.48	0.0	7.59	17.64	29.71	42.32	53.97	0.00	63.91	148.50	250.14	356.30	454.45	254.66	4.76	5.50	0.00	1.00	26.21	52.39	254.48	6.20
FW33	473.6	1000 947.36	842.08	736.8	631.52	526.24	0.00	49.06	102.31	166.62	237.06	308.69	0.0	6.61	13.79	22.46	31.95	41.60	0.00	55.68	116.09	189.08	269.01	350.29	196.03	3.49	6.00	0.00	1.00	20.97	38.42	195.94	4.77
FW50	729.7	1000 972.97	918.91	864.85	810.79	756.73	0.00	30.23	48.94	70.71	94.99	121.28	0.0	5.17	8.37	12.09	16.24	20.73	0.00	35.40	57.31	82.79	111.23	142.01	85.75	0.00	4.62	0.00	1.00	0.00	0.00	85.75	2.19
FW51	766.4	1000 976.64	929.92	883.2	836.48	789.76	0.00	29.08	44.87	63.01	83.17	105.01	0.0	4.97	7.67	10.77	14.22	17.95	0.00	34.06	52.54	73.78	97.39	122.96	76.14	8.26	4.61	0.02	1.01	38.12	52.89	74.88	1.91
FW52	639.3	1000 963.93	891.79	819.65	747.51	675.37	0.00	35.33	63.48	96.92	134.32	174.33	0.0	5.66	10.17	15.53	21.52	27.94	0.00	41.00	73.65	112.45	155.84	202.27	117.04	9.55	5.29	0.04	1.01	50.49	76.37	114.62	5.80
FW53	752.1	1000 975.21	925.63	876.05	826.47	776.89	0.00	31.50	49.54	70.37	93.57	118.69	0.0	5.05	7.94	11.28	14.99	19.02	0.00	36.55	57.48	81.65	108.56	137.72	84.39	16.93	5.60	0.11	1.03	94.83	135.47	78.36	3.97
FW54	511.6	1000 951.16	853.48	755.8	658.12	560.44	0.00	47.41	95.92	154.42	218.96	285.60	0.0	6.39	12.93	20.81	29.51	38.49	0.00	53.80	108.85	175.23	248.47	324.09	182.09	15.37	6.23	0.02	1.01	95.69	169.04	180.37	4.39
FW55	606.6	1000 960.66	881.98	803.3	724.62	645.94	0.00	43.37	80.56	124.97	174.55	227.23	0.0	5.85	10.86	16.84	23.52	30.62	0.00	49.22	91.41	141.81	198.08	257.86	147.68	15.41	6.53	0.02	1.01	100.63	169.50	146.11	3.56
FW60	663.8	1000 966.38	899.14	831.9	764.66	697.42	0.00	32.33	56.58	85.24	117.32	151.78	0.0	5.53	9.67	14.57	20.05	25.95	0.00	37.86	66.25	99.81	137.37	177.73	103.80	10.79	4.22	0.04	1.01	45.48	69.03	101.64	2.59
FW61	856.9	1000 985.69	957.07	928.45	899.83	871.21	0.00	26.33	35.39	45.40	56.30	68.01	0.0	4.50	6.05	7.76	9.62	11.62	0.00	30.83	41.44	53.17	65.93	79.63	54.20	10.76	5.23	0.04	1.01	56.28	68.84	51.66	1.32
FW62	483.7	1000 948.37	845.11	741.85	638.59	535.33	0.00	40.89	84.60	137.38	195.31	254.46	0.0	6.55	13.56	22.02	31.30	40.78	0.00	47.44	98.16	159.39	226.61	295.24	165.37	8.26	5.19	0.03	1.01	42.85	66.04	162.92	8.25
FW63	702.6	1000 970.26	910.78	851.3	791.82	732.34	0.00	33.16	55.50	81.68	110.95	142.56	0.0	5.31	8.89	13.09	17.78	22.85	0.00	38.48	64.40	94.77	128.73	165.40	98.36	14.67	5.77	0.08	1.03	84.69	117.35	92.36	4.68
FW64	254.2	1000 925.42	776.26	627.1	477.94	328.78	0.00	59.00	141.53	3 240.08	340.59	429.01	0.0	7.95	19.07	32.36	45.90	57.82	0.00	66.95	160.61	272.44	386.49	486.83	274.66	5.23	5.06	0.00	1.00	26.46	57.51	274.46	6.69
FW65	508	1000 950.8	852.4	754	655.6	557.2	0.00	47.57	96.52	155.56	220.67	287.80	0.0	6.41	13.01	20.97	29.74	38.79	0.00	53.98	109.53	176.53	250.41	326.58	183.40	9.22	6.12	0.01	1.00	56.49	101.46	182.80	4.45

5637C.FR

Weld	Process	Dia	Electrode	Amps	Volts	TS	HI	Weld Pentration Depth	Pipe Details	Thickness	Pipe Diameter	Yield Strength (initial)	Max. Back Surface Temp	Fusion Line Time 1000oC - 1000oC	Calculated Bursting Pressure	Burst P/ Yield Pressure	Burst P/ MOP
		(mm)		(A)	(V)	ipm	kJ/mm	(mm)	•	(mm)	(mm)		(degC)				
												100.00	100.0				
FW4	SMAW	2.4	718MC	90	21	12.5	0.35	1.15	NPS 20, X52	6.4	508	403.36	482.6	1.12	3.98	0.38689	0.2786
FW5	SMAW	2.4	718MC	90	21	8.5	0.53	1.36	NPS 20, X52	6.4	508	403.36	540	1.44	3.55	0.34485	0.2483
FW6	SMAW	2.4	718MC	90	21	6.0	0.74	1	NPS 20, X52	6.4	508	403.36	600	2.44	3.10	0.30073	0.2165
FW7	SMAW	2.4	718MC	90	21	3.5	1.29	1.16	NPS 20, X52	6.4	508	403.36	681.4	3.16	2.51	0.24409	0.1757
FW8	SMAW	3.2	718MC	120	20.5	11.0	0.53	1.13	NPS 20, X52	6.4	508	403.36	657.9	3.56	2.56	0.24892	0.1792
FW9	SMAW	3.2	718MC	120	20.5	4.5	1.29	1.78	NPS 20, X52	6.4	508	403.36	701.2	1.36	2.38	0.23125	0.1665
FW10	SMAW	3.2	718MC	120	20.5	11.0	0.53	1.82	NPS 12, X52	8	324	430.25	531.9	2.1	7.46	0.34257	0.2466
FW11	SMAW	3.2	718MC	120	20.5	4.5	1.29	2.5	NPS 12, X52	8	324	430.25	594	4.45	6.50	0.29837	0.2148
FW12	P-GMAW	0.9	K-NOVA	100	20.5	14.0	0.35	1.29	NPS 20, X52	6.4	508	403.36	510.4	1.6	3.74	0.36337	0.2616
FW14	SMAW	3.2	AtomArc 10018-M1	120	20	10.5	0.53	1.65	NPS36, X70	11	914	511.61	342.2	1.85	5.93	0.47565	0.3425
FW15	SMAW	3.2	AtomArc 10018-M1	120	20	4.5	1.29	1.45	NPS36, X70	11	914	511.61	465.6	3.85	4.84	0.38811	0.2794
FW23	GMAW - RMD	1.2	K-NOVA	170	17	13.0	0.53	1.5	NPS 20, X52	6.4	508	403.36	559.4	2.08	3.34	0.32488	0.2339
FW24	GMAW - RMD	1.2	K-NOVA	170	17	5.5	1.29	1.61	NPS 20, X52	6.4	508	403.36	770.2	1.24	1.91	0.18588	0.1338
FW28	P-GMAW	0.9	K-NOVA	100	20.5	5.5	0.53	1.4	NPS 20, X52	6.4	508	403.36	536.3	1.76	3.58	0.34810	0.2506
FW29	P-GMAW	0.9	K-NOVA	100	20.5	2.5	1.29	1.25	NPS 20, X52	6.4	508	403.36	752.2	6.68	2.01	0.19531	0.1406
FW30	P-GMAW	0.9	K-NOVA	100	20.5	7.5	0.53	1.45	NPS 12, X52	8	324	430.25	482.4	2.05	8.33	0.38258	0.2755
FW31	P-GMAW	0.9	K-NOVA	100	20.5	3.0	1.29	1.26	NPS 12, X52	8	324	430.25	755.6	9	4.06	0.18638	0.1342
FW32	P-GMAW	0.9	ER70XTi	100	20.5	7.5	0.53	1.51	NPS36, X70	11	914	511.61	311.9	1.5	6.20	0.49741	0.3581
FW33	P-GMAW	0.9	ER70XTi	100	20.5	3.0	1.29	1.26	NPS36, X70	11	914	511.61	473.6	2.75	4.77	0.38299	0.2758
FW50	GS-FCAW	1.2	DS II 71T-12	200	25.5	11.00	1.06	1.32	NPS 20, X52	6.4	508	403.36	729.7	0.00001	2.19	0.21259	0.1531
FW51	GS-FCAW	1.2	DS II 71T-12	175	24.5	8.00	1.29	0.79	NPS 20, X52	6.4	508	403.36	766.4	2.44	1.91	0.18565	0.1337
FW52	GS-FCAW	1.2	DS II 71T-12	200	25.5	11.00	1.06	1.53	NPS 12, X52	8	324	430.25	639.3	2.05	5.80	0.26640	0.1918
FW53	GS-FCAW	1.2	DS 71T-12	175	24.5	8.00	1.29	0.76	NPS 12, X52	8	324	430.25	752.1	5	3.97	0.18212	0.1311
FW54	GS-FCAW	1.2	DSII 80T1-Ni1	225	26.5	11.00	1.29	1.34	NPS36, X70	11	914	511.61	511.6	3.3	4.39	0.35256	0.2538
FW55	GS-FCAW	1.2	DSII 80T1-Ni1	225	26.5	7.00	1.99	0.85	NPS36, X70	11	914	511.61	606.6	5.2	3.56	0.28559	0.2056
FW60	MCAW	1.2	MC70	140	20.5	13.00	0.52	0.97	NPS 20, X52	6.4	508	403.36	663.8	1.96	2.59	0.25198	0.1814
FW61	MCAW	1.2	MC70	140	20.5	5.25	1.29	1.15	NPS 20, X52	6.4	508	403.36	856.9	4.84	1.32	0.12807	0.0922
FW62	MCAW	1.2	MC70	140	20.5	13.00		2.47	NPS 12, X52	8	324	430.25	483.7	1.5	8.25	0.37866	0.2726
FW63	MCAW	1.2	MC70	140	20.5	5.25	1.29	2.03	NPS 12, X52	8	324	430.25	702.6	6.6	4.68	0.21466	0.1546
FW64	MCAW	1.2	MC100	140	20.5	13.00	0.52	1.08	NPS36, X70	11	914	511.61	254.2	0.95	6.69	0.53647	0.3863
FW65	MCAW	1.2	MC100	140	20.5	5.25	1.29	1.17	NPS36, X70	11	914	511.61	508	4.15	4.45	0.35730	0.2573

5637C.FR

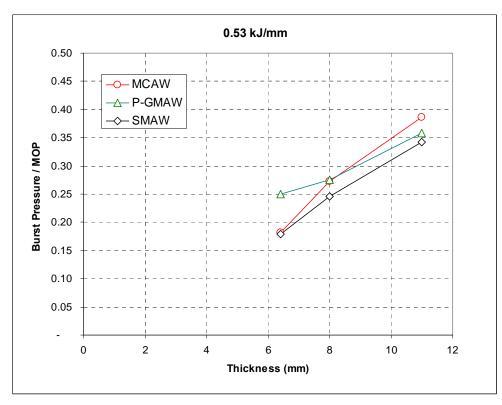


Figure 4.23: Burst Pressure/MOP (%) vs. Thickness and Weld Process - 0.53kJ/mm

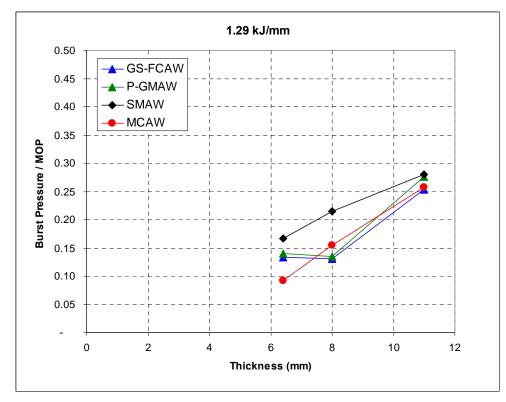


Figure 4.24: Burst Pressure/MOP (%) vs. Thickness and Weld Process - 1.29kJ/mm

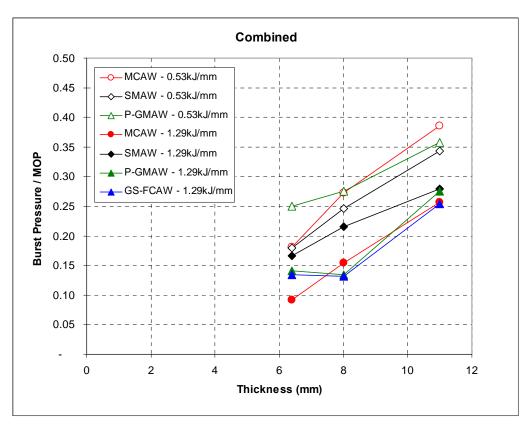


Figure 4.25: Burst Pressure / MOP (%) vs. Thickness and Weld Process – 0.53 and 1.29kJ/mm

4.6 Task 4: Examine Cooling Rates as a Function of Welding Process Arc Efficiency

The weld temperature history, calculated cooling rates, HAZ and weld metal hardness measurements, and maximum back surface temperatures from each of the welds under static air (no flow conditions) are shown in **Table 4.12**. Only the alloyed weld metals were measured for hardness as mild steel "weld metals" are typically not as sensitive to delayed cracking compared to those highly alloyed weld metals typically used in low CE high strength pipeline materials.

To acquire the required data, each test weld deposited on pipe measured a length of six (6) inches and the travel speed was maintained at a predetermined rate with mechanized travel. Using the methods outlined previously, thermocouples were used to acquire the thermal data from both the weld and back surface temperature for each weld deposited. The collected weld thermal data can be used to plot the cooling rate of each process over a range of thickness, as shown in **Figures 4.26** and **4.27**.

																		L(ocation												
												Oc	ular Rea														ness (Hv	.,			
	Pipe Thickness				Heat Input	Cooli	ing Rate		CGH	AZ - Pip	e Side		CG-I	HAZ Sle	eve		Wel	d			CGI	IAZ	- Pip	oe Sid	e	CG	-HAZ SI	eeve		We	ld
Weld ID	Pipe mickness	Grade	C.E	Process	пеат прит	∆T 800-500C	Slope at 540C	1	2	3	4	5	1	2	3	1	2	3	4	1	2		3	4	5	1	2	3	1	2	3
	(mm)				(kJ/mm)	(s)	(degC / sec)	•	-	Ů	-	Ů	•	-	v	•	-	Ů	-	•	-		Ŭ.	-	Ů		-	Ů		-	Ľ
A1	3.2	X52	0.16	SMAW	0.35	6.06	-38	218	217	215	216	214								195			01	199							
A2	3.2	X52	0.16	SMAW	0.53	9.2	-20	221	218	213	217	220								190	19	5 2	04	197	192						
A3	3.2	X52	0.16	SMAW	0.74	14.59	-18	215	217	210	213	214								201	19	7 2	10	204	202						
A4	6.4	X52	0.43	SMAW	0.35	2.56	-59.5	155	164	175	172	166								386	34	53	03	313	336						i T
A5	6.4	X52	0.43	SMAW	0.53	6.56	-29.5	188	176	199	182	182								262	29	9 2	34	280	280						i T
A6	6.4	X52	0.43	SMAW	0.74	12.3	-22.5	199	200	201	200	202								234	23	2 2	29	232	227						
A7	6.4	X52	0.43	SMAW	1.29	22.36	-19.5	209	205	207	205	204								212	22	1 2	16	221	223						
A8	6.4	X52	0.43	SMAW	0.53	6.57	-17.5	214	227	226	231	232								202	18	0 1	82	174	172						$ \neg $
A9	6.4	X52	0.43	SMAW	1.29	25.54	-12	223	226	224	224	223								186	18	2 1	85	185	186			1			1
A10	8	X52	0.14	SMAW	0.53	5.02	-52.5	215	215	213	216	215								201	20	1 2	04	199	201						
A11	8	X52	0.14	SMAW	1.29	23.29	-14.5	221	223	223	223	211								190			86	186							
A12	6.4	X52	0.43	P-GMAW	0.35	4.63	-46	157	180	181	167	172								376	-	-	83	332	313						-+
A14	11	X70	0.22	SMAW	0.53	3.34	-63	182	182	181	180	180				177	182	180	184	280		_	83	286	286				296	280	286
A15	11	X70	0.22	SMAW	1.29	10.88	-6	194	193	199	194	194				187	_	195	192	246		-	34	246	246					241	244
A16	16.1	X80	0.27	SMAW	0.53	2.66	-92	172	171	174	171	171				175		180	179	313			06	317	_				303		286
A17	16.1	X80	0.27	SMAW	1.29	10.04	-23	172	179	178	180	179				184		190	190	310		_	93	286	289				274		257
A18	19.1	X70	0.24	SMAW	0.53	2.5	-88.5	175	175	180	178	176				176	183		181	303			86	293	299					277	299
A19	19.1	X70	0.24	SMAW	1.29	9.35	-29.5	190	190	193	199	198				184		188	191	257			49	234	237				274	-	262
A19 A20	3.2	X52	0.16	GMAW - RMD	0.19	2.55	-80.5	211	211	213	209	206				104	100	100	101		20		49 04	212	_				2/7	200	
A20	3.2	X52	0.16	GMAW - RMD	0.35	5.96	-43	211	211	213	209	213								206	_	_	04	206	_		-	+	<u> </u>	+	
A21 A22	3.2	X52	0.16	GMAW - RMD	0.53	8.49	-43	212	211	212	212	213		⊢		<u> </u>				206			00	200	_			+	1	1	$ \rightarrow$
A22 A23	6.4	X52	0.16	GMAW - RMD	0.53	5.89	-20 -28.5	180	181	187	192	193	\vdash	┝──╄						206			04 65	202	208	 	+	+	I	ł —	$ \rightarrow$
A23 A24	6.4	X52	0.43	GMAW - RMD	1.29	30.59	-28.5	209	209	211	214	211								200			03	202			_				$ \rightarrow$
A24 A25	3.2		0.43	P-GMAW	0.19					211	214																-	-	-		\rightarrow
		X52				2.9	-68	211	213			212								208			02	208	206	-	-	-			<u> </u>
A26	3.2	X52	0.16	P-GMAW	0.35	7.14	-36.5	211	212	217	213	217								208			97	204	197		-	-			<u> </u>
A27	3.2	X52	0.16	P-GMAW	0.53	14.13	-20	217	212	215	215	215								197			01	201	201	-	_	-			ا ا
A28	6.4	X52	0.43	P-GMAW	0.53	8.01	-23.5	222	181	195	192	193								188			44	252			_				<u> </u>
A29	6.4	X52	0.43	P-GMAW	1.29	24.46	-8.89	209	212	208	215	216								212			14	201	199		_	_			
A30	8	X52	0.14	P-GMAW	0.53	7.63	-37	213	216	219	217	217								204		_	93	197	197						
A31	8	X52	0.14	P-GMAW	1.29	27.49	-8	229	224	227	225	222								177			80	183	188						
A32	11	X70	0.22	P-GMAW	0.53	2.83	-37	186	182	181	180	182					186	189	188	268			83	286	280		_		268	268	260
A33	11	X70	0.22	P-GMAW	1.29	23.02	-8.34	198	198	197	197	198						204	207	237			39	239	237				225	223	223
A34	16.1	X80	0.27	P-GMAW	0.53	4.14	-66.5	173	169	172	173	173				179		185	181	310			13	310	310					274	271
A35	16.1	X80	0.27	P-GMAW	1.29	12.62	-25	182	182	183	182	185				198	_	185	198	280		_	77	280	271				237	234	271
A36	19.1	X70	0.24	P-GMAW	0.53	3.11	-86	181	184	179	178	176				175	175	180	178	283			89	293	299				303	303	286
A37	19.1	X70	0.24	P-GMAW	1.29	7.22	-32	193	197	194	188	189				196	194	198	198	249	23	9 2	46	262	260				241	246	237
A38	6.4	X52	0.43	SS-FCAW	1.06	31.44	-8.5	215	214	216	217	217								201			99	197	197						
A39	6.4	X52	0.43	SS-FCAW	1.29	37.09	-8.5	212	219	217	217	219								206	19	3 1	97	197	193						
A40	8	X52	0.14	SS-FCAW	1.06	18.9	-13.5	225	225	229	225	221								183		3 1	77	183	190						
A41	8	X52	0.14	SS-FCAW	1.29	27.73	-6	223	228	228	226	230								186	17	8 1	78	182	175						
A44	11	X70	0.22	SS-FCAW	1.29	22.71	-14.5	197	196	199	200	200				204	203	203	204	239		1 2	34	232	232				223	225	225
A45	11	X70	0.22	SS-FCAW	1.99	39.91	-2.5	202	202	204	202	204				206	211	205	208	227	22	7 2	23	227	223				218	208	221
A46	16.1	X80	0.27	SS-FCAW	1.29	7.68	-23	180	179	180	184	180				191	190	192	196	286			86	274	286				254	257	252
A47	16.1	X80	0.27	SS-FCAW	1.99	17.51	-8	192	190	192	191	196				202	203	199	200	252	25	7 2	52	254	241				227	225	234
A48	19.1	X70	0.24	SS-FCAW	1.29	4.99	-24.4	192	196	196	196	195				191	197	193	198	252	24	1 2	41	241	244				254	239	249
A49	19.1	X70	0.24	SS-FCAW	1.99	16.2	-15	201	201	201	204	205				203	203	206	206	229	22	9 2	29	223	221				225	225	218
A50	6.4	X52	0.43	GS-FCAW	1.06	21.12	-7.2	208	209	217	209	210								214	21	2 1	97	212	210						ت
A51	6.4	X52	0.43	GS-FCAW	1.29	35.24	-6.375	210	208	210	208	213								210	21	4 2	10	214	204						
A52	8	X52	0.14	GS-FCAW	1.06	16.16	-10.625	222	223	226	224	221								188	18	6 1	82	185	190						
A53	8	X52	0.14	GS-FCAW	1.29	24.04	-9.875	226	225	226	225	225								182	18	3 1	82	183	183						
A54	11	X70	0.22	GS-FCAW	1.29	7.56	-77.25	199	201	198	198	198				200	202	201	200	234	22	9 2	37	237	237				232	227	229
A55	11	X70	0.22	GS-FCAW	1.99	37.88	-3.75	211	212	209	210	210				209	211	212	212	208	20	6 2	12	210	210				212	208	206
A56	16.1	X80	0.27	GS-FCAW	1.29	6.01	-37.5	183	182	181	182	185				194	197	197	201	277	28	0 2	83	280	271				246	239	239
A57	16.1	X80	0.27	GS-FCAW	1.99	15.62	-6	195	188	192	187	191				202		203	203	244			52	265						227	225
A58	19.1	X70	0.24	GS-FCAW	1.29	6.38	-34.5	400	107	197	10.1	4.0.4				40.4	101	000	202	057	0.0		~~	0.40	054				246	246	227
A59	19.1	X70	0.24	GS-FCAW	1.99	13.42	-25.5		204		204					211													208	210	212
A60	6.4	X52	0.43	MCAW	0.53	7.28	-25.75	198																	244	1			1		
A61	6.4	X52	0.43	MCAW	1.29	41.4	-6.5	215			219														192			1	1	1	
A62	8	X52	0.14	MCAW	0.53	4.6	-13.32	218			220														195			1	1	1	
A63	8	X52	0.14	MCAW	1.29	28.52	-9.375	228	227		231														178		1	1	1	1	$ \rightarrow$
A64	11	X70	0.22	MCAW	0.53	3	-73.125	189	187	188	186					175	176	177	178										303	299	296
A65	11	X70	0.22	MCAW	1.29	16.08	-12.875	207	205	206	205	209							194											246	
A66	16.1	X80	0.27	MCAW	0.53	2.92	-95	175	175	175	176	174							186											310	
A67	16.1	X80	0.27	MCAW	1.29	6.93	-66	173	194	185	188	189							191											262	
1.01	19.1	X70	0.24	MCAW	0.53	2.76	-88.875	182	181	185	177	109							177											293	
						2.70	00.010	102	101	100		101					110	110			120	~							1 200		
A68 A69	19.1	X70	0.24	MCAW	1.29	6.64	-36.625	197	195	196	198	196				196	190	100	189	220	2/	4 2	41						2/1	257	257

Table 4.12: Cooling Data and Hardness Results – Static Air

		Pea	k Hardness (Hv5)	Avera	age Hardness (H	√ 5)
	4	CGHAZ Pipe	CGHAZ Sleeve	Weld	CGHAZ Pipe	CGHAZ Sleeve	Weld
		202			199		
_		204			196		
_		210			203		
-		386 299			337 271		
-		233			231	-	
		223			219		
		202			182		
_		186			185		
_		204 208			201 191		
-		376			318		
ô	274	286		296	283		284
1	252	249		265	244		250
ô	289	317		303	314		291
7	257	310		274	293		260
9 2	283 254	303 257		299 274	297 247		290 265
-	204	218		2/7	210		200
		208			206		
		208			205		
		286			267		
_		212 208			209 206		
-		208			200		
		206			200		
		283			243		
		214			206		
_		204			198		
0	262	188 286		268	183 279		264
3	202	239		200	279		204
1	283	325		289	313		279
1	237	280		271	278		245
ô	293	299		303	288		296
7	237	262		246	251		240
_		202 206			199 197		
-		190			183		
		186			180		
5	223	241		225	236		224
1	214	227		221	225		215
2	241 232	289 257		257 234	284 251		251 230
+ 9	232	257		254	251		230
3	218	229		225	226		222
		214			209		
		214			211		
_		190			186		
9	232	183 237		232	183 235		230
9 ô	206	237		232	209		230
9	229	283		246	278		238
5	225	265		227	255		226
7	227	257		246	247		237
2	208	227		212	223		210
-		257 202			243 195		
		195			195		
		180			177		
6	293	268		303	264		298
1	246	221		254	218		248
3	268	306		310	303		293
7 Э	254 296	271 296		262 299	261 275		259 294
5 7	260	290		260	240		254

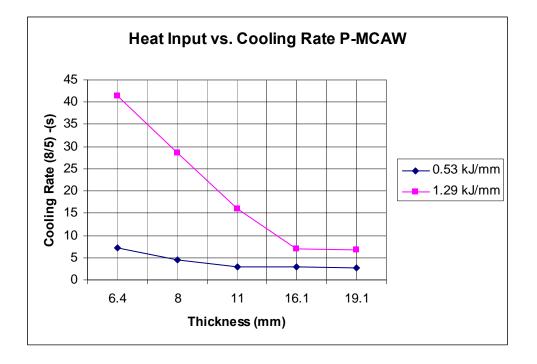


Figure 4.26: Cooling Rate vs. Heat Input, P-MCAW Process

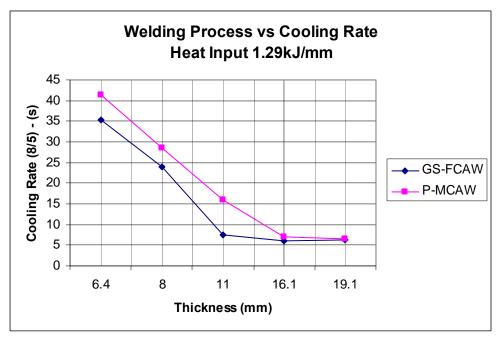


Figure 4.27: Cooling Rate vs. Welding Process, Heat Input 1.29 kJ/mm

Figure 4.27 shows that at a constant heat input of 1.29 kJ/mm, the P-MCAW process produces a slower cooling rate for a given thickness compared to the GS-FCAW process. This again is an effect of arc efficiency and could be advantageous in terms of using a specific process to produce softer weld zone microstructures that are less susceptible to delayed hydrogen cracking.

The hardness results when plotted vs. heat input and process (shown in **Figures 4.28** to **4.32**), show a general trend of decreasing hardness with increasing heat input as expected, however there is an even more interesting trend that shows the SMAW process results in the highest hardness at a given heat input level, with a downward trend in hardness vs. process at a given heat input level proceeding from the PGMAW to FCAW to PMCAW processes. This indicates that the processes with the higher arc efficiencies (i.e., transfer more heat from the arc to the base material) result in lower CGHAZ hardnesses regardless of material type and thickness. Based on these results, the SMAW process has the lowest arc efficiency (as demonstrated by the highest hardness) and the PMCAW has the highest arc efficiency (as demonstrated by the lowest hardness). As demonstrated in Figure 4.27, the MCAW process produced slower cooling rates vs. the FCAW process for a given heat input which in theory should provide a softer HAZ hardness. The plots in Figures 4.29 to 4.32 prove this theory is correct.

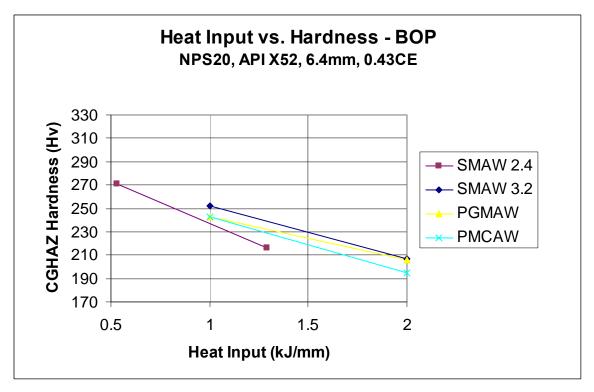
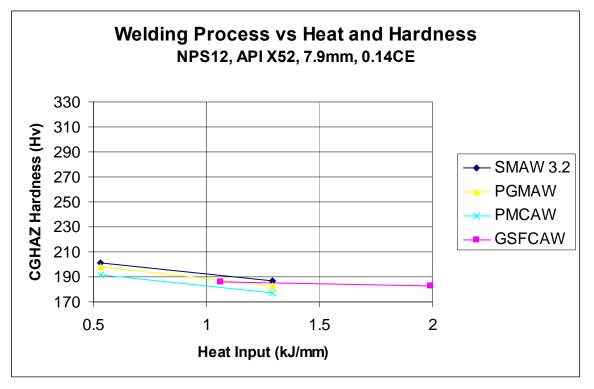
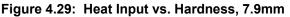




Figure 4.28: Heat Input vs. Hardness, 6.4mm

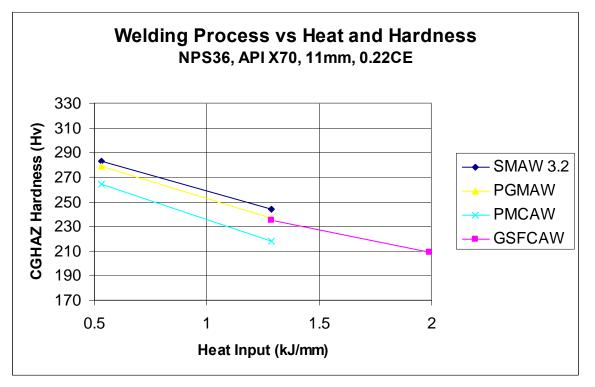


Figure 4.30: Heat Input vs. Hardness, 11mm

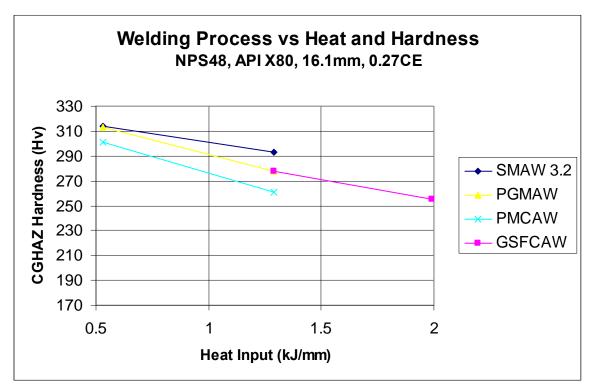


Figure 4.31: Heat Input vs. Hardness, 16.1mm

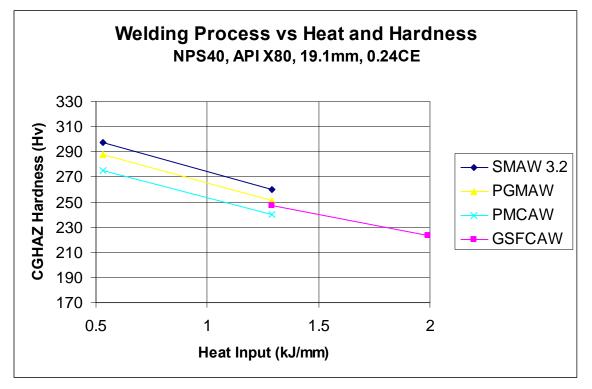


Figure 4.32: Heat Input vs. Hardness, 19.1mm

4.7 Task 5: Establish Diffusible Hydrogen Characteristics

This task was used to determine the diffusible hydrogen characteristics of each of the electrodes received for this study. The data was then used to investigate the times to peak hydrogen concentration in Task 6, that involves predicting delay times for welds that are considered susceptible to hydrogen cracking (i.e., those welds that have a hardness of 300 VHN or higher).

All low hydrogen mild steel SMAW electrodes received were baked at 400°C for one (1) hour at a maximum layer depth of 25mm. The electrodes were immediately transferred into an electrode storage oven set at 120°C. Each of the mild steel SMAW electrodes, except the 2.4mm diameter, were tested for diffusible hydrogen as per AWS A4.3 Standard using the under mercury method, in the as-received and baked condition. The results are shown in **Table 4.13**. No real trend was visible between the electrodes that were tested in the as-received and baked conditions, however a significant trend was apparent between increase of welding amperage and hydrogen. One possible reason for this hydrogen increase is that as amperage increases with the SMAW process using a constant current power source, the voltage across the arc and the arc length will increase. It is possible that this arc length increase allows for more moisture to be picked up and transferred across the arc in the form of hydrogen into the weld pool.

All other electrode/process combinations were subjected to diffusible hydrogen testing in the as-received condition to estimate the hydrogen potential and susceptibility to delayed cracking in Task 6, and the results are shown in **Figure 4.33**. The 10% $CO_2 - 90\%$ Argon shielding gas used for the GMAW processes was analyzed for moisture and the results indicated a 1ppm moisture concentration. Gas moisture and other factors have a direct correlation with available hydrogen, and 1ppm is considered to be on the low side of the range of most industrial gases which typically contain 5 to 10ppm concentrations.

Electrode	Condition	Amperage (A)	Average Diffusible Hydrogen (ml/100g)
2.4mm Hobart 718MC (E7018-1)	as received	90	2.93
	as-received	90	4.27
3.2mm Hobart 718MC (E7018-1)	baked	90	4.12
	as-received	160	6.03
	baked	160	6.73
	as-received	130	4.03
4.0mm Hobart 718MC (E7018-1)	baked	130	3.93
	as-received	220	5.28
	baked	220	6.2

Table 4.13: Diffusible Hydrogen Comparison between As-received and Conditioned Low Hydrogen Electrodes

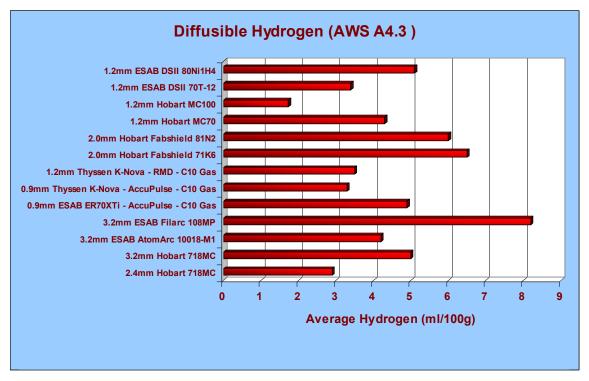


Figure 4.33: Diffusible Hydrogen Comparisons of Each Electrode Evaluated

4.8 Task 6: Establish Delay Time Predictions

It is well publicized that welds with a HAZ hardness of 350 VHN and higher, and with sufficient available hydrogen, are susceptible to hydrogen induced cold cracking, also known as delayed hydrogen cracking. Delay time is the amount of time that passes from the end of weld completion to the time that available (local) hydrogen reaches its highest concentration in the most susceptible cracking region (i.e., highest stress concentration zone in the hard HAZ). For the purpose of this project, select welds that exhibit a hardness of 300VHN and higher, were modelled to determine their time to peak hydrogen. The 300VHN boundary is selected to include the uncertainty of the 350HVN when applying this criterion to modern low carbon steels, noting that the 350VHN is based on C-Mn steels.

The delay time to peak hydrogen was determined using the BMT Fleet Technology Limited Hydrogen Cracking Susceptibility and Delay Time Prediction software. A typical example of a weld model used in the modeling software is shown in **Figure 4.34**. The weld profile (taken from an actual weld cross section) in this case is identified by green cells marked 1 and the dimensions were measured from the cross section of the bead-on-pipe weld A68 (P-MCAW weld using MC100 filler metal on 19.1mm thick X80 pipe, heat input of 0.53 kJ/mm)). The grey cells represent parent/base metal. The cells identified by 0 (yellow) are open space. A cell is 0.5mm x 0.5mm.

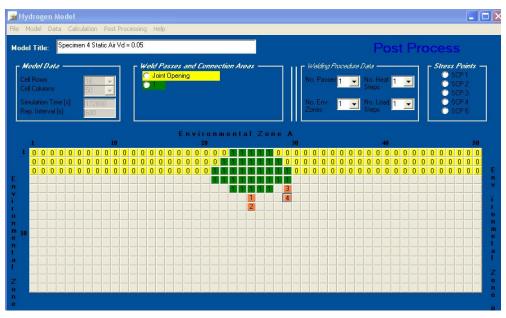


Figure 4.34: BMT Fleet Technology Limited Hydrogen Cracking Susceptibility and Delay Time Prediction Model

The hydrogen diffusion through the weld model is calculated using a finite difference technique, based on the thermal history and the apparent hydrogen diffusivity. The thermal history is calculated based on an analytical solution to the moving point heat source equation, and the apparent hydrogen diffusivity is calculated based on the trap density input for each weld model.

A diffusion analysis was conducted in this case for static air (no flow conditions). The analyses were carried out for a total hydrogen level equal to unity ($H_{total} = 1.0$). Two trap densities were considered for each model, $v_d = 0.05$ and $v_d = 0.10$. These trap densities span those that have been experimentally determined from apparent diffusivity for single pass welds encompassing SMAW and GMAW welds.⁸,⁹]

The hydrogen levels for four cells located in the HAZ (orange cells 1 and 2 (root location), and, 3 and 4 (weld toe location) in **Figure 4.35**) were monitored for a time period of 48 hours. A typical result, in terms of the hydrogen level versus time, is presented in **Figure 4.36** (for Specimen A68 in a static air environment). The time to peak hydrogen in Figure 4.36 represents a 1mm wide HAZ band where delayed cracking is most likely as it covers the hard HAZ. The important output from these plots is the maximum delay to peak hydrogen in the 1mm HAZ band and not the level of hydrogen, as the focus of this task is guidance for determination of optimal inspection times after welding. Thus, in this example for weld A68 the time to peak hydrogen cracking is minimal after that time period has lapsed assuming a Vd = 0.1.

To assess the likelihood of delayed cracking before this delay time, knowledge of the susceptibility of the microstructure (hardness level is one of the parameters), and tensile stress (applied and residual) is required in addition to the actual peak hydrogen level, therefore the actual susceptibility of this weld to delayed cracking is uncertain.

⁸ L. N. Pussegoda et al: "Delayed Cracking in Simulated Naval Platform Repair Welds", Trends in Welding Research-Proc. 6th Int. Conf.", ASM International, (2002), pp. 581-585.

⁹ L. N. Pussegoda et al: "Determination of critical hydrogen curves from loe bend tests", Proc. IPC 2004 (IPC 04-0414).

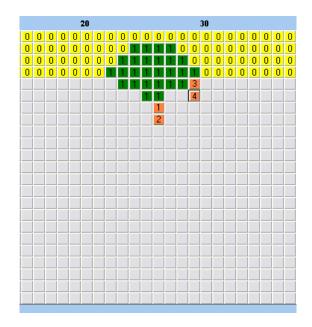


Figure 4.35: Cells Monitored in Model

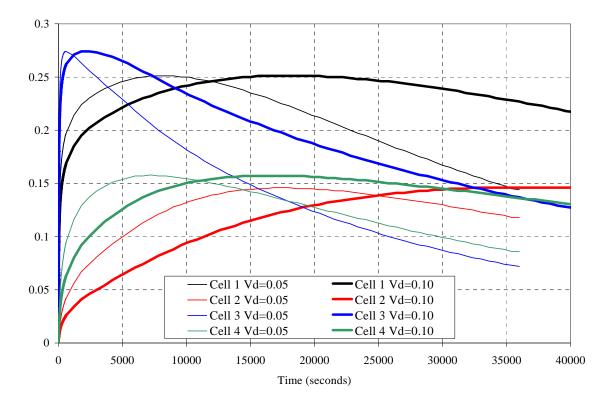


Figure 4.36: Hydrogen Concentration vs. Time (Specimen A68, Welded in Static Air)

The complete modeling results of the delay times in the welds that were considered highest susceptible to hydrogen cracking (CGHAZ above 300VHN), are shown in **Table 4.14**. These welds were produced in the NPS20 X52 pipe that had the highest carbon equivalent of 0.43 CE. Also note that the flowing air and water mist spray delay time results are based on the thermal history and hardness results achieved in Task 7. The columns identified as time to peak hydrogen are the delay times for $V_d = 0.05$ and 0.1, respectively.

Several of the welds deposited with static air and with water backing were plotted against each other as a comparison, and these are shown in **Figures 4.37** to **4.44**. These illustrate that the addition of the heat sink from the water containment results in a significance difference in delay time. The primary reason for this is the rapid cooling of the weld to the pipe temperature while in-service. One of the main controlling factors for the diffusion of hydrogen is temperature, therefore if the weld cools quicker to the pipeline operating temperature, then it will take longer for the hydrogen to migrate to a specific point within the weld zone, and thus a require a longer delay time.

								Time 1000	C to 100C				
						Coc	ling Rate	Experimental	Model	Vd = 0.05		Vd = 0.1	
	Weld	Thickness	Carbon Equivalent	Process	Heat Input	800-500	Slope at 540	T1000-100	T1000-100	Time to Peak H	Peak H	Time to Peak H	Peak H
Scenerio	#	mm	C.É.		(KJ/mm)	(s)	(oC/s)	(s)	(s)	(hrs)		(hrs)	
Air	A12	6.4	0.43	P-GMAW	0.35	4.63	-46	113.03	98.8	1.25	0.182	3.417	0.187
	A4	6.4	0.43	SMAW	0.35	2.56	-59.5	101.43	75.9	0.417	0.202	1.417	0.204
	A5	6.4	0.43	SMAW	0.53	6.56	-29.5	150.05	123.1	0.333	0.190	1.417	0.193
	A56	16.1	0.43	GS-FCAW	0.35	4.63	-46	195.03	279	2.830	0.22	7.000	0.220
	A64	11	0.22	MCAW	0.53	2.56	-59.5	136.64		5.000	0.154	10.580	0.154
	A66	16.1	0.27	MCAW	0.53	6.56	-29.5	86.08		4.470	0.147	10.080	0.147
	A68	19.1	0.24	MCAW	0.53	2.76	-88.9	52.88		4.830	0.146	10.250	0.146
Flowing Air	FA12	6.4	0.43	P-GMAW	0.35	4.41	-52	89.8	88.8	1.417	0.181	3.417	0.187
· · · · · · · · · · · · · · · · · · ·	FA28	6.4	0.43	P-GMAW	0.53	7.76	-25.5	150.88	127.5	0.667	0.224	2.417	0.228
	FA4	6.4	0.43	SMAW	0.35	4.27	-62.5	81.77	66.9	0.500	0.200	1.417	0.204
	FA5	6.4	0.43	SMAW	0.53	5.17	-38	105.17	108.2	0.583	0.188	1.750	0.194
Water Mist Spray	WMS12	6.4	0.43	P-GMAW	0.35	4.07	-55	71.06	52.9	2.167	0.182	5.250	0.187
rrator anot opray	WMS28	6.4	0.43	P-GMAW	0.53	7.85	-26	100.91	70.6	1.667	0.223	3.750	0.229
	WMS4	6.4	0.43	SMAW	0.35	2.53	-80	61.29	44.0	1.000	0.198	2.333	0.204
	WMS5	6.4	0.43	SMAW	0.53	5.5	-37.5	90.22	61.1	1.333	0.189	3.250	0.194
	WMS6	6.4	0.43	SMAW	0.74	11.04	-23.5	107.45	77.1	1.667	0.213	4.250	0.218
	WMS8	6.4	0.43	SMAW	0.53	5.16	-31	72.46	61.1	1.750	0.213	4.417	0.218
Water	W12	6.4	0.43	P-GMAW	0.35	3.14	-64.8	33.8	47.4			5.40	0.188
	W4	6.4	0.43	SMAW	0.35	3.2	-63.3	28.8	39.4			2.50	0.206
	W5	6.4	0.43	SMAW	0.53	4.1	-50.8	37.9	55.8	Not Investiga	ted	3.33	0.195
	W64	11	0.22	SMAW	0.35	2	-81.1	59.25	54.2			15.00	0.154

Table 4.14: Delay Time Prediction Results

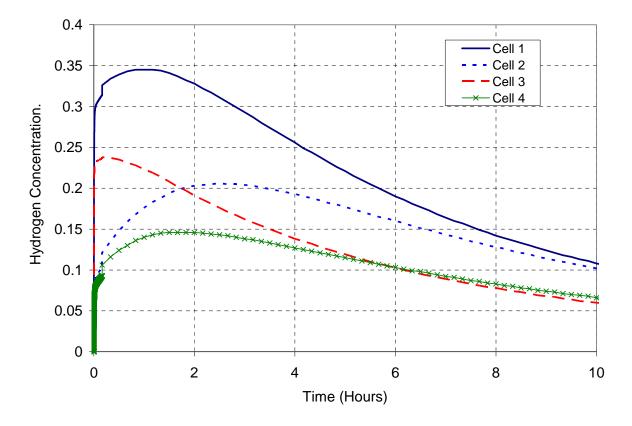


Figure 4.37: Specimen W4 – Static Water – Hydrogen vs. Time History

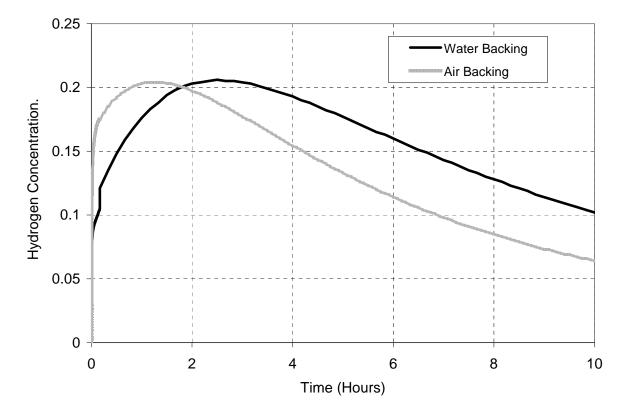


Figure 4.38: Specimen A4 & W4 – Comparison of Hydrogen Time Histories – Static Air and Static Water – Cell 2

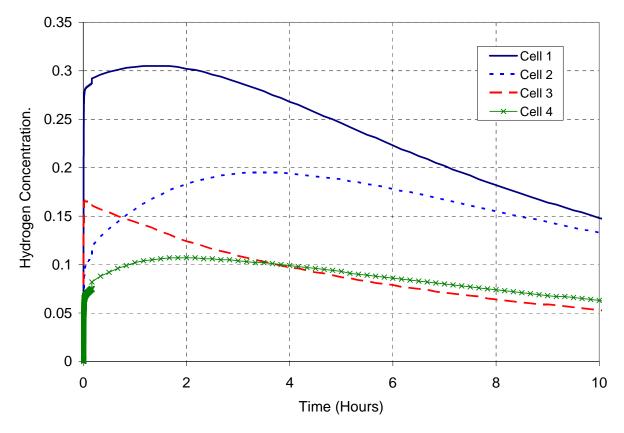


Figure 4.39: Specimen W5 – Static Water – Hydrogen vs. Time History

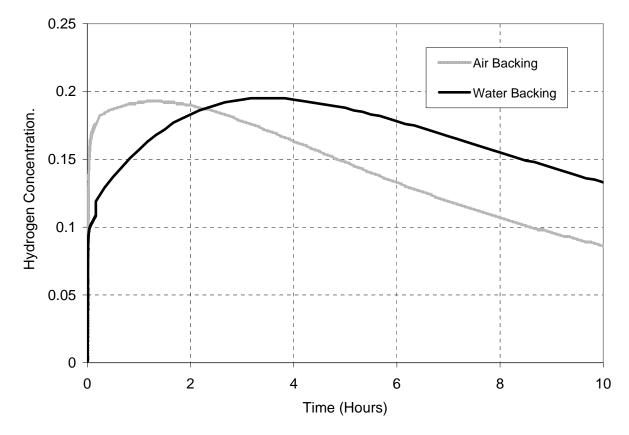


Figure 4.40: Specimen A5 & W5 – Comparison of Hydrogen Time Histories – Static Air and Static Water – Cell 2

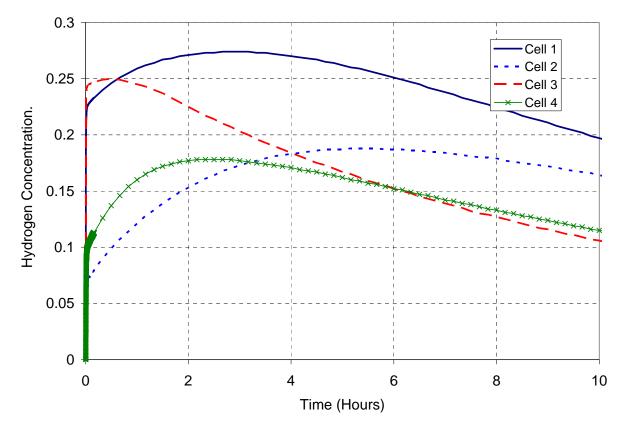


Figure 4.41: Specimen W12 – Static Water – Hydrogen vs. Time History

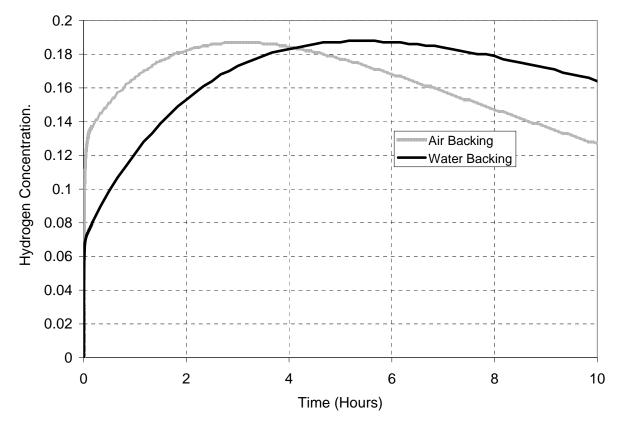


Figure 4.42: Specimen A12 & W12 – Comparison of Hydrogen Time Histories – Static Air and Static Water – Cell 2

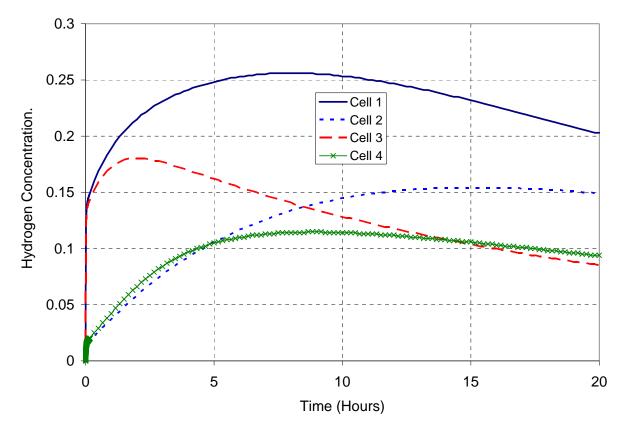


Figure 4.43: Specimen W64 – Static Water – Hydrogen vs. Time History

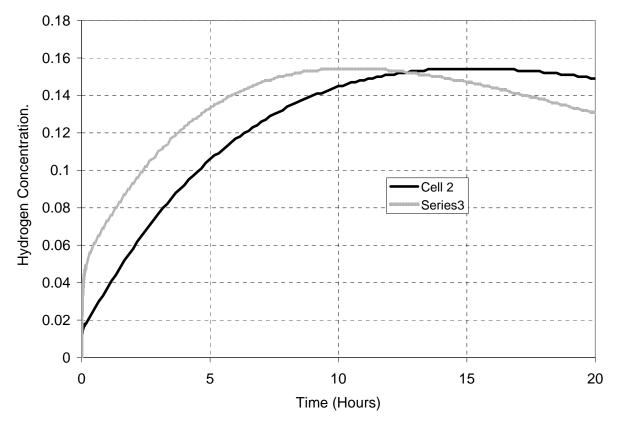


Figure 4.44: Specimen A64 & W64 – Comparison of Hydrogen Time Histories – Static Air and Static Water – Cell 2

4.9 Task 7: Weld Zone Characterization for Various Repair Scenarios

The intention of this task was to determine if susceptibility to burn-through could reduce with increasing heat sink capacity, at a given heat input level, and, if one or more processes could extend the safety envelope of in-service welding when compared back to the SMAW process.

4.9.1 Flowing Air – Bead on Pipe Welds

Each weld deposited measured a length of six (6) inches and the travel speed was maintained with mechanized travel. A 20-inch diameter fan was used to force air into the end of the pipe for the flowing air experiments to simulate environmental heat sink effects on weld cooling rates. The air speed was adjusted to achieve a consistent air speed at the back surface of each test weld at 15 MPH at ambient temperature. The air speed was measured using a calibrated anemometer and the speed is consistent with past work performed for PRCI (PRCI report ref L51713e). A hole was drilled at the mid-length of the intended test weld along the centreline, and a K-type thermocouple was inserted from the inside and exposed to the outside diameter surface. A thermocouple was also attached to the inside surface and approximately at the mid-length of the weld to measure peak back surface temperatures. Each test weld temperature history, calculated cooling rates, and HAZ and weld metal hardness measurements from each of the welds with flowing air conditions, are shown in **Table 4.15**. All welding data is provided in **Appendix G**. A typical temperature-time plot achieved from a test weld on flowing air conditions is provided as **Figure 4.45**.

																		Locatio	n												7					
												Oc	ular Rea	adina										Hardn	ess (Hv	/5)										
	Disc. This is a sec				11	Cool	ing Rate		CGHA	Z - Pipe	Side		CG-I	IAZ SIe	eve		Weld			CGH	AZ - Pi	pe Sid	е		HAZ SI		I	We	ld		Pea	k Hardness (Hv	5)	Ave	rage Hardness (H	lv5)
Weld ID	Pipe Thickness	Grade	C.E	Process	Heat Input	∆T 800-500C	Slope at 540C	4	2	3	4	5	4	2	3	4	2 3	4	4	2	3	4	5	4	2	3	4	2	3	4		CGHAZ Sleeve	Weld		CGHAZ Sleeve	Weld
	(mm)				(kJ/mm)	(s)	(degC / sec)			Ū.	•	-		2	3		2 3	4	1		-	-	•		2	3		2	3	4		CGHAZ Sleeve	weiu		COHAZ Sleeve	weiu
FA1	3.2	X52	0.16	SMAW	0.35	5.57	-37.5		215			_								3 201			192								208			200		
FA2	3.2	X52	0.16	SMAW	0.53	7.73	-31	220												2 197			201								208			201		$ \longrightarrow $
FA3	3.2	X52	0.16	SMAW	0.74	10.4	-20.5	215	215	-	216	217								201		199				_					210			201	l	L
FA4 FA5	6.4 6.4	X52 X52	0.43	SMAW SMAW	0.35	4.27 5.17	-62.5	168 179		166	170	166						_		321	336 277		336	_	-	_	_				336			329 294	┥───┤	⊢
FA5 FA6	6.4	X52	0.43	SMAW	0.53 0.74	12.52	-38 -20	179	176 178		178 188	172 189						_			211		260		-	-					313 293			294	┥────┤	
FA7	6.4	X52	0.43	SMAW	1.29	20.94	-20	203	-		188							-					210		-						293			200	++	
FA8	6.4	X52	0.43	SMAW	0.53	7.78	-31.5	196		184	187	190							241	_	_	265									274			252	++	
FA9	6.4	X52	0.43	SMAW	1.29	26.86	-14.5	214	212		210	212									214										214			208	++	
FA10	8	X52	0.14	SMAW	0.53	4.72	-40	213													204										206			205		
FA11	8	X52	0.14	SMAW	1.29	13.91	-14	218	220										195	5 192	192	186	183								195			190		
FA12	6.4	X52	0.43	P-GMAW	0.35	4.41	-52	172	181		-								313		_		296								313			296		
FA14	11	X70	0.22	SMAW	0.53	3.78	-64.5	184		182	181	181				181		100		1 277		283	200							277	283		283	279		278
FA15	11	X70	0.22	SMAW	1.29	9.67	-26	194		194	196	193				193	189 19		246			241	_				_	260	252	246	249		260	246		252
FA16	16.1	X80	0.27	SMAW	0.53	2.95	-74	170	174		184	170				171	176 17	3 177	321	306	306	274	321			_	_	299	310	296	321		317	306		306
FA17 FA18	16.1 19.1	X80 X70	0.27	SMAW SMAW	1.29 0.53	7.22 2.44	-34.5	181 178	177	179	180 176	181 179				191 173	192 18 180 17		283	_	289	286	283			_	254	252 286		252 310	296 299		274 313	288 285		258 305
FA18 FA19	19.1	X70 X70	0.24	SMAW	0.53	2.44	-98 -23	178		184	176	179					180 17			271		299		-		_		286		254	299		254	285		250
FA19 FA20	3.2	X52	0.24	GMAW - RMD	0.19	2.4	-23	214	210			212				193	194 19	5 191	201	2 210				-	-		249	240	249	204	202		204	207	++	250
FA21	3.2	X52	0.16	GMAW - RMD	0.35	5.13	-45.5		213									_			212										210			208	++	
. /	0.2	7.02	0.110		0.00	0.10	1010		2.0	200	210	2.2							200	201		2.0	200								2.12			200	++	
FA23	6.4	X52	0.43	GMAW - RMD	0.53	5.95	-32	184	199	199	198	187							274	1 234	234	237	265								274			249		
FA24	6.4	X52	0.43	GMAW - RMD	1.29	25.32	-3	209	210	213	205	211							212	2 210	204	221	208								221			211		
FA25	3.2	X52	0.16	P-GMAW	0.19	3.39	-27	246	214	216	212	218							153	3 202	199	206	195								206			191		
FA26	3.2	X52	0.16	P-GMAW	0.35	6.9	-37	218	216		216								195			199									206			198		$ \longrightarrow $
FA27	3.2	X52	0.16	P-GMAW	0.53	10.97	-23	249		216								_		201			197	_		_					201			189	l	L
FA28	6.4 6.4	X52	0.43	P-GMAW P-GMAW	0.53	7.76	-25.5	196	177			182							_	1 296			280			_	_				296			267	┥───┤	
FA29 FA30	6.4 8	X52 X52	0.43	P-GMAW P-GMAW	1.29 0.53	26.79 6.51	-8 -28	214 219	204 216		206 215	207 221						-		2 223 3 199		218 201		-	-	-					223 201			214 195	┥────┤	<u> </u>
FA30 FA31	8	X52	0.14	P-GMAW P-GMAW	1.29	23.38	-20	219	216										183				177		-		-				185			195	++	
FA32	11	X70	0.22	P-GMAW	0.53	3.49	-68.5	180	179		182	181				193	190 19	1 189	286	289	286	280	283				249	257	254	260	289		260	285		255
FA33	11	X70	0.22	P-GMAW	1.29	22.26	-11	200	201		196	198					207 20	5 206	232	2 229	237	241	237							218	241		221	235		218
FA34	16.1	X80	0.27	P-GMAW	0.53	3.23	-65.5	175	170	172	172	173				183	188 18	5 183	303	3 321	313	313	310				277	262	271	277	321		277	312		272
FA35	16.1	X80	0.27	P-GMAW	1.29	7.87	-37.5	188	182	184	181	182				198	196 19	4 198	262	2 280	274	283	280				237	241	246	237	283		246	276		240
FA36	19.1	X70	0.24	P-GMAW	0.53	2.82	-71.5	176		179	176	177				175				200	289	299						329	-	280	299		329	297		228
FA37	19.1	X70	0.24	P-GMAW	1.29	9.69	-22.5	193	192		190	187				192	192 19	7 198	249		252	257					252	252	239	237	265		252	255		245
FA38	6.4	X52	0.43	SS-FCAW	1.06	23.73	-12	219	214			-								1 204			201			_					210			205	<u> </u>	
FA39	6.4	X52	0.43	SS-FCAW	1.29	33.79	-5.5	213	213										188		100	185		<u> </u>	<u> </u>						188			186	∔┦	⊢ I
FA40 FA41	8	X52 X52	0.14	SS-FCAW SS-FCAW	1.06 1.29	17.49	-9 -9	222 221	223 228	222	224 228	226 224						-	188			185 178				+					188			186 182	┥───┤	I
FA41 FA44	8	X52 X70	0.14	SS-FCAW SS-FCAW	1.29	25.19 20.21	-9 -13.5	197		229	228	199				202	203 20	3 205	239		222	232					227	225	225	221	239		227	235		224
FA44 FA45	11	X70 X70	0.22	SS-FCAW	1.99	39.3	-13.5	204	204		200	202					203 20	_			223	232	-					_		221	239		246	235		224
FA46	16.1	X80	0.27	SS-FCAW	1.29	8.21	-20	182	-	185	185	184					200 19				257	260					_			239	262		240	255		237
FA47	16.1	X80	0.27	SS-FCAW	1.99	17.34	-9	193		190	189	194					203 20			_	241	249					_	225		210	252		234	248		221
FA48	19.1	X70	0.24	SS-FCAW	1.29	8.82	-43.5	194	192	196	193	192				190	194 19	1 198	246	3 252	241	249	252						254	237	252		257	248		248
FA49	19.1	X70	0.24	SS-FCAW	1.99	15.55	-17	203	198	199	201	201				205	203 20	5 202	225	5 237	234	229	229				221	225	221	227	237		227	231		223

Table 4.15: Cooling Rate and Hardness Results – Flowing Air Conditions

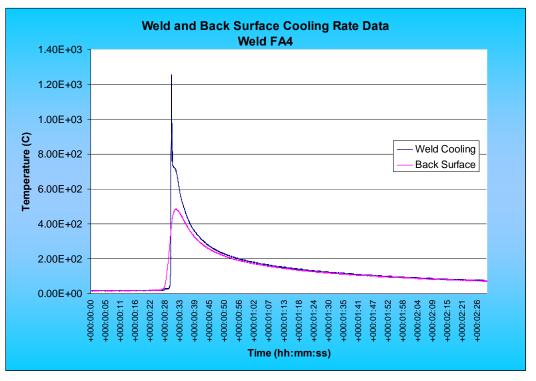
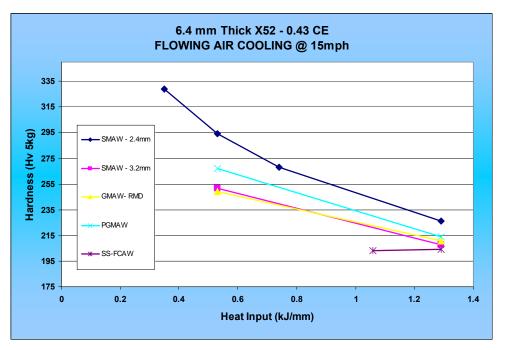



Figure 4.45: Weld and Back Surface Cooling Rate, Flowing Air Heat Sink Conditions

The sections that were removed from the mid-length of each bead on pipe each (outside the contamination zone from the melted thermocouple) for HAZ hardness measurements for flowing air conditions are shown in **Appendix H**.

Trends were plotted between heat input and HAZ hardness for each weld / process over the range of materials evaluated. **Figure 4.46** is a plot for welds deposited on NPS 20 grade X52 with a CE of 0.43 under flowing air conditions with each process. This plot shows that for a given heat input the differences in weld process arc efficiency has a direct influence on weld cooling rate and thus HAZ hardness. For example, the SS-FCAW process is a higher arc efficiency process compared to SMAW, and therefore transfers heat more efficiently at a given heat input in comparison. This higher arc efficiency at a given heat input results in slower weld cooling rates and a lower HAZ hardness.

4.9.2 <u>Water Mist Spray – Bead on Pipe Welds</u>

Each weld deposited measured a length of six (6) inches and the travel speed was maintained with mechanized travel. A water mist nozzle system (consisting of spray nozzle, feed water, and compressed air), was used to simulate natural gas heat sink conditions and its affect on weld cooling rates over a range of material thicknesses, types, and welding procedures. To ensure consistency from one test to another, the air pressure and water feed rate to the spray nozzle was controlled by calibrated metering valves. The air pressure was adjusted to achieve an average flow rate of 5.5 meters per second (m/sec) at the back surface of each test weld, and the air speed was measured using an anemometer. The water pressure was adjusted to achieve a fine mist and wide spray pattern from the spray nozzle for maximum pipe wall coverage. To ensure the same spray pattern was used for all test welds, the indexed metering valves were locked to achieve a consistent air pressure and water flow rate. To determine if the flowing water mist spray would provide sufficient heat sink to achieve the cooling conditions of a in-service flowing natural gas pipelines, heat sink capacity spot heating tests were conducted to determine the 250°C to 100°C cooling times (procedure as specified in PRCI report L51713e) on the NPS 20 x 6.4mm wall X52 pipe. The results of spot heating tests provided an average cooling time of 23 sec from 250°C to 100°C. The linear flow rate and resulting heat sink cooling capacity measurements are within the range of tests from past research for PRCI (PRCI report ref. L51713e), conducted on the High Pressure Loop at the GRI Metering Research Facility, on a simulated 6.4mm wall natural gas pipeline flowing at a volumetric flow rate of 16.9 mmscfd.

A hole was drilled at the mid-length of the intended test weld location and along its centreline, and a Ktype thermocouple was inserted from the inside diameter and exposed to the outside diameter surface. The temperature of the flowing water mist spray was measured with a thermocouple attached to the back surface of the test weld before welding commenced, and the temperature ranged from 10 to 12°C for all welds deposited. The test weld was deposited over the exposed thermocouple and was consumed by the weld metal. The weld temperature history, calculated cooling rates, and HAZ and weld metal hardness measurements from each of the welds deposited with flowing water mist spray, are shown in **Table 4.16**. All welding data is provided in **Appendix I**. A typical temperature-time plot achieved from a test weld, and the back surface, with flowing water mist spray conditions is provided as **Figure 4.47**.

																	l	Locat	ion											1					
												Oc	ular Readi	ng									Hare	Iness (H	v5)					1					
	Pipe Thickness				Heat Input		ing Rate		CGHA	Z - Pipe	e Side		CG-HA	Z Sleeve		W	/eld			CGHA	Z - Pipe	Side	C	G-HAZ S	leeve		We	ld		Pea	k Hardness (Hv5	i)	Ave	age Hardness (H	v5)
Weld ID	-	Grade	C.E	Process	•	∆T 800-500C	Slope at 540C	1	2	3	4	5	1	2 3	1	2	3	4	1	2	3	4	5 1	2	3	1	2	3	4	CGHAZ Pipe	CGHAZ Sleeve	Weld	CGHAZ Pipe	CGHAZ Sleeve	Weld
111101	(mm)			014114	(kJ/mm)	(s)	(degC / sec)		010		0.1.0				_					100	105	105		_	-										
WMS1	3.2	X52	0.16	SMAW	0.35	4.72	-51		216	-	-	-			_		_		-	199		195		_	_	_				202			198		,
WMS2 WMS3	3.2 3.2	X52 X52	0.16	SMAW SMAW	0.53	7.05	-31 -23	211	212 213	214	214		+ +	_	-	_	-	_	208	206 204		202		_	_		-			208 206			204 204		
WMS4	3.2 6.4	X52	0.16	SMAW	0.74	2.53	-23 -80	155			150			_			-	-		401				_	-	-	-			412			389		
WMS5	6.4	X52	0.43	SMAW	0.53	5.5	-37.5	186	132	182	176	184		-	-	-	-	-	268			299		-	-	-				299			281		
WMS6	6.4	X52	0.43	SMAW	0.33	11.04	-23.5		197	-	-	-		-			-	-		239		303				-				303			264		
WMS7	6.4	X52	0.43	SMAW	1.29	20.17	-17	-	212								-			206		227			-	-				227			218		
WMS8	6.4	X52	0.43	SMAW	0.53	5.16	-31		174		-									306										332			294		
WMS9	6.4	X52	0.43	SMAW	1.29	16.75	-2.5	204	208		214									214										223			210		
WMS10	8	X52	0.14	SMAW	0.53	3.59	-57	211	216	215	214	212							208		201									208			203		
WMS11	8	X52	0.14	SMAW	1.29	15.74	-17.5	227	226	222	221	221							180	182	188	190	190							190			186		
WMS12	6.4	X52	0.43	P-GMAW	0.35	4.07	-55	175	177	200	178	183	T						303	296	232	293	277							303			280		
WMS14	11	X70	0.22	SMAW	0.53	3.21	-66.5	182	186	184	182	182			183	187	187	7 18	34 280	268	274	280	280			277	265	265	274	280		277	276		270
WMS15	11	X70	0.22	SMAW	1.29	12.56	-11.5	202	195	196	197	200			197		200) 19	94 227	244	241	239	232			239	234	232	246	244		246	237		238
WMS16	16.1	X80	0.27	SMAW	0.53	3.19	-66.5	172	173	171	172	174			180		179	9 18		310	011		306			286			277	317		289	312		284
WMS17	16.1	X80	0.27	SMAW	1.29	5.36	-57	184	184	185	183	183			190		192	2 19				277 :				257		_	252	277		257	274		253
WMS18	19.1	X70	0.24	SMAW	0.53	2.72	-60.5	174	181	181	181	180		_	179			5 18					286	_	_	289			277	306		289	288		279
WMS19	19.1	X70	0.24	SMAW	1.29	6.62	-34	188	191	193	193	190			193	193	191	1 19				249		_	_	249	249	254	254	262		254	254		252
WMS20	3.2	X52	0.16	GMAW - RMD	0.19	1.91	-91.5	212	208	210	206	207	+ +	_	-	-	_	_	206			218		_	-	-				218			213 211		
WMS21 WMS22	3.2 3.2	X52 X52	0.16	GMAW - RMD GMAW - RMD	0.35	4.41 6.84	-17.5 -31.5	212 211	207 215	210 210	210 216	210 210	+ +	_	-	_	-	_	206	216		210 199		_			-			216 210			211 206		
WMS22	3.2 6.4	X52	0.16	GMAW - RMD	0.53	6.25	-31.5	191		196	181	196		_			-	-		201	-	283	-		-	-	-			210			206		
WMS24	6.4	X52	0.43	GMAW - RMD	1.29	27.81	-32	-	211		-			_	-		-	_		208				_	_	-				203			239		
WMS25	3.2	X52	0.43	P-GMAW	0.19	3	-71.5		211								-	-		208						-				208			205		
WMS26	3.2	X52	0.16	P-GMAW	0.35	6.31	-46	208			206			-			-	-		200					-	-				200			205		
WMS27	3.2	X52	0.16	P-GMAW	0.53	10.15	-48		213						-					204					-	-				204			201		
WMS28	6.4	X52	0.43	P-GMAW	0.53	7.85	-26	176	178	190	192	190							299			252								299			271		
WMS29	6.4	X52	0.43	P-GMAW	1.29	25.58	-11	222	212	179	176	177							188	206										299			256		
WMS30	8	X52	0.14	P-GMAW	0.53	5.46	-39.5	220	215	217	213	217							192	201	197	204	197							204			198		
WMS31	8	X52	0.14	P-GMAW	1.29	26.72	-6	222	232	227	224	223							188	172	180	185	186							188			182		·
WMS32	11	X70	0.22	P-GMAW	0.53	3.48	-77.5	183	181	184	184	186			185	190	185	5 19	91 277	283	274	274	268			271	257	271	254	283		271	275		263
WMS33	11	X70	0.22	P-GMAW	1.29	12.84	-17	195	194	196	196	198			203	206	206	6 20)4 244	246	241	241	237			225	218	218	223	246		225	242		221
WMS34	16.1	X80	0.27	P-GMAW	0.53	2.75	-97	173	172	173	173	175			183		181	1 18		0.0	310	310 🗧	303			277			286	313		286	309		283
WMS35	16.1	X80	0.27	P-GMAW	1.29	9.09	-20	186	177	187	179	186			195		197	7 19		200	265	289	268			244			234	296		244	277		237
WMS36	19.1	X70	0.24	P-GMAW	0.53	1.71	-106	177	178	177	173	175			176			1 17			296		303			299			306	310		329	299		304
WMS37	19.1	X70	0.24	P-GMAW	1.29	7.41	-40.5	188	188	189	186	190			193	191	192	2 19				268	-			249	254	252	257	268		257	262		253
WMS38	6.4	X52	0.43	SS-FCAW	1.06	26.44	-8	211		211	207	209	+ $+$	_	+		+	_	208			216			_	+				216			212		I
WMS39 WMS40	6.4 8	X52 X52	0.43	SS-FCAW SS-FCAW	1.29	33.07 19.51	-3 -12.5	209 220	206 223	212 229	208 224	213 226	+ $+$	_	+		+	_	212			214 : 185 :	204 182		_	-	-			218 192			211 184		I
WMS40 WMS41	8	X52 X52	0.14	SS-FCAW SS-FCAW	1.06	26.7	-12.5	220	223	229	224		+	_	+	+	+		192				182	_	-		-			192			184	┥───┤	I
WMS41	0 11	X52 X70	0.14	SS-FCAW SS-FCAW	1.29	12.57	-6 -22	195		203	198	199			205	205	206	3 20				237			-	221	221	218	222	244		223	235		221
WMS45	11	X70	0.22	SS-FCAW	1.29	29.54	-22	203	205	203	201	199			203			$\frac{2}{2}$				229				208			223	234		212	235		208
WMS46	16.1	X80	0.22	SS-FCAW	1.39	8.01	-3	183	185	186	184	183			194			7 19		271		274				246			239	277		246	273		200
WMS47	16.1	X80	0.27	SS-FCAW	1.99	15.59	-11.5	194	192	191	190	186				205		3 20		_		257				223			214	268		223	255		218
WMS48	19.1	X70	0.24	SS-FCAW	1.29	6.46	-36.5	196		202	194				195) 19		257	-					-	239	257		257		257	245		248
WMS49	19.1	X70	0.24	SS-FCAW	1.99	11.68	-26.5		198		197	199			205	205			07 249								221			249		229	237		222
												1										l					1								
P	·		•	-	•		•																												

Table 4.16: Cooling Rate and Hardness Data vs. Process – Water Mist Spray Conditions

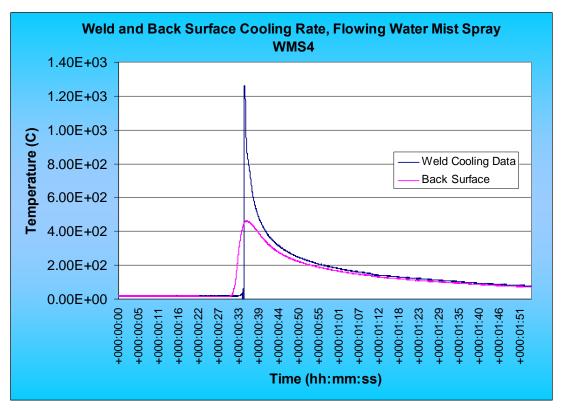


Figure 4.47: Weld and Back Surface Cooling Rate, Flowing Water Mist Spray

The sections that were removed from the mid-length of each bead on pipe weld (outside the contamination zone from the melted thermocouple) for HAZ hardness measurements for flowing air conditions are shown in **Appendix J**.

Trends were plotted between heat input and HAZ hardness for each weld / process over the range of materials evaluated. **Figure 4.48** is a plot for welds deposited on 0.43 CE X52 under flowing water mist spray conditions with each process. This plot shows that for a given heat input the differences in weld process arc efficiency has a direct influence on weld cooling rate and thus HAZ hardness. For example, the SS-FCAW process is a higher arc efficiency process compared to SMAW, and therefore transfers heat more efficiently at a given heat input in comparison. This higher arc efficiency at a given heat input results in slower weld cooling rates and a lower HAZ hardness.

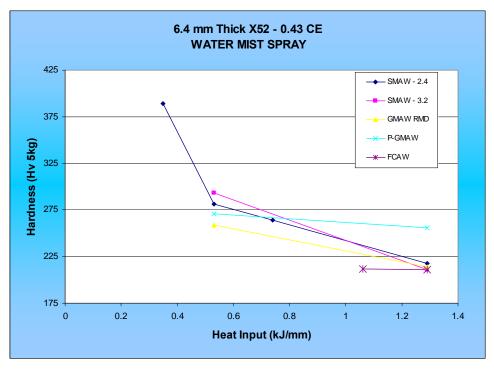


Figure 4.48: Heat Input vs. HAZ Hardness, Flowing Water Mist Spray

To examine the differences in arc efficiency between each of the welding processes and its influence on cooling rate, a trend is plotted for 0.53 kJ/mm and 1.29 kJ/mm heat inputs in Figures 4.49 and 4.50, respectively, for each process and conditions between static air, flowing air, and water mist spray. These plots demonstrate that cooing time from 1000°C to 100°C rate is less affected by the "external" cooling conditions or the process as thickness increases at the lower heat input setting, compared to at the higher heat input. As heat input increases the differences between arc efficiency of each process and cooling rate become more apparent. These plots also demonstrate that the heat sink has less of an influence on cooling rates as the pipe wall thickness approaches 20mm, in other words it is likely that the cooling rate of welds deposited on 20mm and higher thickness will not be influenced by the flowing fluid/gas. In addition, these plots demonstrate that for a given heat input, welding process, and heat sink condition, the SMAW process has the fastest cooling rate compared to the other welding processes. The SS-FCAW and P-GMAW processes provide the slowest cooling times and could be beneficial in terms of allowing more time for hydrogen to escape from the weld pool before returning to ambient or service temperature, and reduce the risk of hydrogen cracking. Furthermore, these plots demonstrate the effect of accelerated cooling as thickness decreases, as the flowing conditions draw more heat from the weld pool. For the low heat input welds, the effect of heat sink becomes most noticeable at a thickness of 6.4mm, as opposed to the higher heat input welds at 11mm, regardless of the welding process used.

In addition, each of the welds evaluated under static air, flowing air, and water mist spray were plotted for cooling rate (slope @ 540°C) vs. CGHAZ hardness, irrespective of the welding process or simulated inservice welding condition. The results are shown in **Figure 4.51**, and demonstrate how each material behaves with respect to cooling rate and hardness. As the pipeline materials carbon equivalent increases the slope of the hardening curves increases rapidly with increasing (higher) cooling rates. This type of plot could be useful for identifying lower heat input and cooling rate boundaries for specific material chemistries in order to produce a weld CGHAZ hardness below a desirable level to avoid cracking.

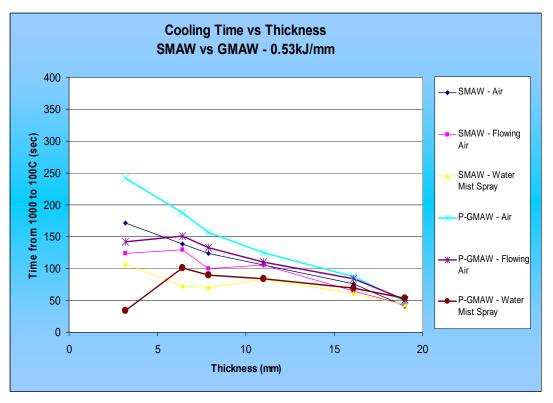


Figure 4.49: Cooling Time vs. Welding Process, 0.53kJ/mm Heat Input

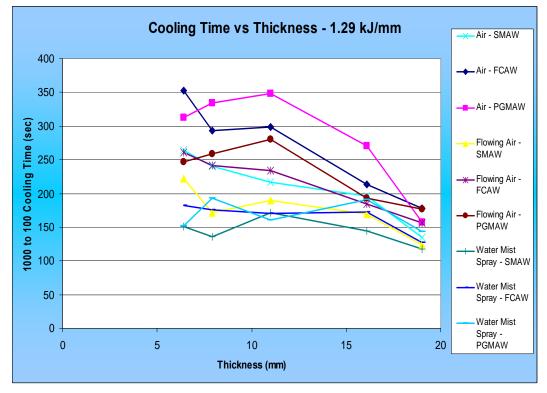
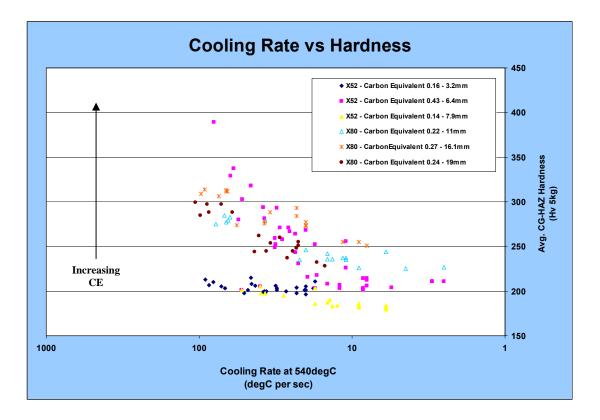
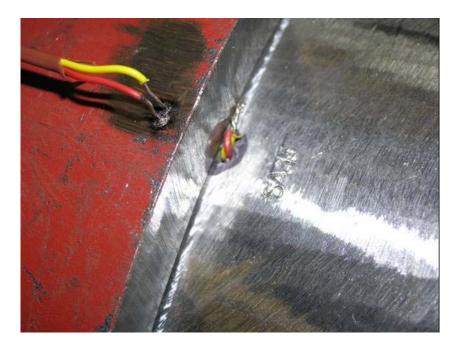
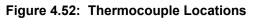



Figure 4.50: Cooling Time vs. Thickness, 1.29kJ/mm Heat Input




Figure 4.51: Coarse Grain Heat Affected Zone (CG-HAZ) Hardness (Hv) vs. Cooling Rate and Carbon Equivalent (CE), Regardless of Heat Sink Condition

4.9.3 Air and Water Backed Results for Bead on Pipe and Sleeve Fillet Welds

Sleeve fillet and bead on pipe welds were manufactured with both air and water backing to demonstrate how the cooling rates of the sleeve fillet welds compare back to the welds deposited on pipe with air backing. The plots of heat input vs. CGHAZ hardness for bead on pipe welds with air backing and each process in **Figures 4.28** to **4.32** can be referenced. To re-summarize, these plots shown a general trend of decreasing hardness with increasing heat input as expected, however there is an even more interesting trend that shows the SMAW process results in the highest hardness at a given heat input level, with a downward trend in hardness vs. process at a given heat input level from the PGMAW to FCAW to PMCAW processes. This indicates that the processes with the higher arc efficiencies (i.e., transfer more heat from the arc to the base material) result in lower CGHAZ hardnesses regardless of material type and thickness. Based on these results, the SMAW process has the lowest arc efficiency (as demonstrated by the lowest hardness).

The set-up for fillet welding the sleeves and bead on pipe welds with water backing was illustrated previously in **Figure 4.20**. In the case of the sleeves, thermocouples were positioned along the weld axis on the back surface, at the weld fusion line, and 10mm away from the edge of the sleeve, as shown in **Figure 4.52**.

An example of a typical thermal history from each of the thermocouple positions is shown in **Figure 4.53**. For bead on plate welds, thermocouples were located as per previous tasks. Epoxy resin was used to seal the hole for the weld thermocouple to avoid water coming through and contaminating the weld. From each of the welds manufactured the cooling time (800 to 500°C), cooling rate (slope at 540°C), and peak back surface temperature were calculated. The cooling rate data and hardness results for the bead on pipe welds with water backing are shown in **Table 4.17** (note all welding data was provided as Appendix E), whereas the data for the sleeve fillet welds for air and water backing, are shown in **Tables 4.18** and **4.19**, respectively. All welding data for sleeve fillet welds with air and water backing are provide in **Appendix K** and **Appendix L**.

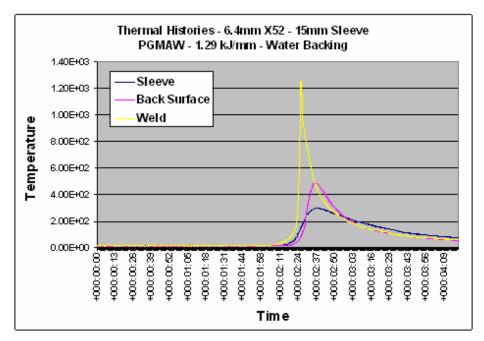


Figure 4.53: Typical Thermocouple Output

								Location													٦													
									Ocular Reading Hardness (Hv5)																									
	Pipe Thickness				Heat Input	Coo	ling Rate	1	CGHAZ - Pipe Side				CG-HAZ	Sleeve	1	We	əld		CC	GHAZ - F	Pipe Side		CG-HA	Z Slee	eve		Weld		Peak Hardness (Hv5)			Average Hardness (Hv5)		
Weld ID	Pipe mickness	Grade	C.E	Process		∆T 800-500C	Slope at 540C	4	2	3	4	5	1 2	2	1	2	3	4	4	2 3	4	5	1	2	3	4	2 3	2 4		e CGHAZ Sleeve	Weld	CGHAZ Pipe C		Weld
	(mm)				(kJ/mm)	(s)	(degC / sec)		-	3	4	3	1 2	3		2	3	4	•	2 3	4	3	•	2	3		2	, ,	CONAL PI	Seeve	weiu	CONAZ PIPE C	GHAZ Sleeve	weiu
FW4	6.4	X52	0.43	SMAW	0.35	3.16	-63.25	162	165	-	183	161			198	196	195				3 277					237 2		44 24			244	326		241
FW5	6.4	X52	0.43	SMAW	0.53	4.12	-50.75	160	167	189	174	158			195		189			32 260						244 2					260	326		247
FW6	6.4	X52	0.43	SMAW	0.74	6.16	-33	182	183	195	168	179			204		205			77 244		289				223		21 21			223	284		221
FW7	6.4	X52	0.43	SMAW	1.29	10.92	-17.25	194	195	182	208	194			205		206				0 214	246				221 2					221	246		217
FW8	6.4	X52	0.43	SMAW	0.53	6.6	-27.25	196	195	196	165	173				203	202	203		44 241		310					225 22	27 22	5 341		227	275		226
FW9	6.4	X52	0.43	SMAW	1.29	16.04	-13.625	195	203		204	199				210	208	214				234				206 2		14 20			214	226		208
FW10	8	X52	0.14	SMAW	0.53	6.1	-44.4	213	216	224	218	217			199	200	199			99 185	5 195	197					232 23	34 23	4 204		234	196		234
FW11	8	X52	0.14	SMAW	1.29	5.75	-40.7	209	213	217	209	210			199	197	200	197	212 2	04 197	7 212	210				234 2		32 23	9 212		239	207		236
FW12	6.4	X52	0.43	P-GMAW	0.35	3.12	-64.75	155	155	180	150	150			190	189	189	189		86 286	6 412	412				257 2		60 26			260	376		259
FW14	11	X70	0.22	SMAW	0.53	3.55	-59.2	179	179	179	179	179			180	184	178	183	289 2	89 289	9 289	289				286 2	274 29	93 27	7 289		293	289		282
FW15	11	X70	0.22	SMAW	1.29	6.25	-57.4	190	189	189	190	190			191	193	192	191	257 2	60 260	0 257	257				254 2	249 25	52 25	4 260		254	258		252
FW23	6.4	X52	0.43	GMAW - RMD	0.53	6.8	-27.875	177	175	201	169	177				199		197			9 325						234 23		9 325		239	290		236
FW24	6.4	X52	0.43	GMAW - RMD	1.29	15.28	-13	197	195	210	189	200									0 260						221 21				223	237		218
FW28	6.4	X52	0.43	P-GMAW	0.53	5.56	-36.25	167	171	194	181	177			201	200	200	201	332 3	17 246	6 283	296			1	229 2	232 23	32 22	9 332		232	295		231
FW29	6.4	X52	0.43	P-GMAW	1.29	24.64	-9.25	204	194	214	183	207			213	213	216	214	223 2	46 202	2 277	216				204 2	204 19	99 20	2 277		204	233		202
FW30	8	X52	0.14	P-GMAW	0.53	3.9	-48.7	215	217	220	213	217			201	201	196	197	201 1	97 192	2 204	197			1	229 2	229 24	41 23	9 204		241	198		235
FW31	8	X52	0.14	P-GMAW	1.29	24.3	-7.9	220	226	223	226	225			218	214	214	214	192 1	82 186	6 182	183				195 2	202 20)2 20	2 192		202	185		201
FW32	11	X70	0.22	P-GMAW	0.53	3.05	-75.1	178	179	179	177	176			181	181	186	183	293 2	89 289	9 296	299				283 2	283 26	68 27	7 299		283	293		278
FW33	11	X70	0.22	P-GMAW	1.29	7.35	-33.2	178	177	177	178	178			185	189	187	192	293 2	96 296	6 293	293			1	271 2	260 26	65 25	2 296		271	294		262
FW50	6.4	X52	0.43	GS-FCAW	1.06	14.44	-19.875	198	210	212	186	205			204	202	199	207	237 2	10 206	6 268	221				223 2	227 23	34 21	6 268		234	228		225
FW51	6.4	X52	0.43	GS-FCAW	1.29	16.2	-11.5	205	202	192	179	202			211	203	209	214	221 2	27 252	2 289	227				208 2	225 21	12 20	2 289		225	243		212
FW52	8	X52	0.14	GS-FCAW	1.06	6.15	-22.2	209	209	216	212	208			194	200	196	199	212 2	12 199	9 206	214			:	246 2	232 24	41 23	4 214		246	209		238
FW53	8	X52	0.14	GS-FCAW	1.29	23.4	-10.3	224	224	222	222	222			216	216	216	217	185 1	85 188	8 188	188				199	199 19	99 19	7 188		199	187		198
FW54	11	X70	0.22	GS-FCAW	1.29	7.7	-28.57	190	191	191	190	189			194	193	198	193	257 2	54 254	4 257	260			:	246 2	249 23	37 24	9 260		249	256		245
FW55	11	X70	0.22	GS-FCAW	1.99	27.9	-6.3	200	194	196	196	200			200	202	203	205	232 2	46 241	1 241	232				232 2	227 22	25 22	1 246		232	239		226
FW60	6.4	X52	0.43	MCAW	0.53	7.48	-22.375	170	175	196	181	183			200	203	201	199	321 3	03 241	1 283	277			:	232 2	225 22	29 23	4 321		234	285		230
FW61	6.4	X52	0.43	MCAW	1.29	20.92	-11.375	200	194	219	196	205			211	214	215	214	232 2	46 193	3 241	221				208 2	202 20	01 20	2 246		208	227		203
FW62	8	X52	0.14	MCAW	0.53	3.55	-66.6	220	219	225	220	218			205	203	203	203	192 1	93 183	3 192	195	1		:	221	225 22	25 22	5 195		225	191		224
FW63	8	X52	0.14	MCAW	1.29	9.65	-25.8	213	212	211	213	213			192	195	192	193	204 2	06 208	8 204	204			:	252 2	244 25	52 24	9 208		252	206		249
FW64	11	X70	0.22	MCAW	0.53	2	-81.11	174	174	174	173	171			171	170	166	168	306 3	06 306	6 310	317	1		:	317 :	321 33	36 32	9 317		336	309		326
FW65	11	X70	0.22	MCAW	1.29	10.6	-18.18	192	193	193	190	195			186	189	188		252 2	49 249	9 257	244				268 2	260 26	62 24	9 257		268	250		260

Table 4.17: Cooling Data and Hardness Results – Bead on Pipe – Water Backing

Table 4.18: Cooling Data and Hardness Results	– Sleeve Fillet Welds -	- Static Air (No Flow)
---	-------------------------	------------------------

bit (m) (m) <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="10">Location</th> <th></th> <th></th> <th></th> <th></th> <th></th>										Location																				
<table-container> Phy Phy Phy Phy Phy Phy Phy Phy Phy <</table-container>																			-		На	rdness	s (Hv5)							
Phy Undep Chi Chi </th <th></th> <th>С</th> <th>G-HAZ S</th> <th>Sleeve</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>CG-H</th> <th>AZ Slee</th> <th>eve</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												С	G-HAZ S	Sleeve			1			CG-H	AZ Slee	eve								
Image Image <th< th=""><th>Weld ID</th><th>Pipe Thickness</th><th>Grade</th><th>CE</th><th>Process</th><th>Welding Position</th><th>Heat Input</th><th colspan="2">Cooling Rate</th><th>CGH/</th><th>Z - Pipe Side</th><th></th><th>Side</th><th>e</th><th>w</th><th>eld</th><th>CGH</th><th>Z - Pip</th><th>e Side</th><th></th><th>Side</th><th></th><th>Weld</th><th></th><th>Peak</th><th>Hardness (H</th><th>lv5)</th><th>Average</th><th>) Hardness (</th><th>(Hv5)</th></th<>	Weld ID	Pipe Thickness	Grade	CE	Process	Welding Position	Heat Input	Cooling Rate		CGH/	Z - Pipe Side		Side	e	w	eld	CGH	Z - Pip	e Side		Side		Weld		Peak	Hardness (H	lv5)	Average) Hardness ((Hv5)
Sec 6.4 5.82 6.94 5.94 6.94 6.9		(mm)	Ciudo		1100000	Wolding Position	(kJ/mm)			1	2 3	1	2	3	1	2	1	2	3	1	2	3	1	2 CG	GHAZ Pipe		Weld	CGHAZ Pipe		Weld
SA L4 SD ABA ABA ABAA ABA ABA		-													-															253
See 1.4 SS 0.50 SMM Fig. 1.8 0.75 0.9 0.8 0.8 0.10 0.80 <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>241</td>	-				-																									241
Sec Sec Sec Hay Bay Bay <td></td> <td>-</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td>		-			•							_				_														-
Sole No. Object Sole Sole <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>					-		-							_									-	-			-			
930 11 C/01 632 394.000 632 440 484.0 190 190 <		÷			•											-									_ · •					200
Sate 11 X70 98 W P 100 101 100		-						-		-	-		-										-				-			351
SN0 10.1 X80 0.77 SM0 75 1.28 3.35 67.1 107 108 107 108 20 47.7 47.0 97.7 490 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 480 92.7 92.7 480 92.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>4.65</td> <td></td> <td>325</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>333</td>						-		4.65																325						333
SA11 151 570 0.54 SMAP 370 150<	SA9	16.1	X80	0.27	SMAW	3F-DWN	0.90	2	-71.42																					
SA72 161 X70 0.64 S70 170 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>321</td> <td></td> <td>001</td> <td></td> <td>358</td>													-				321		001											358
SA13 0.4 STD 0.45 PAMW B ⁻¹ 100 101 100 10																	000		1 1 1					-			-			429
BA4 6.4 S70 0.40 PBAW PZ 1.06 1.06 1.08 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	-	-		-	•							-	• • • •																-	
Shife 6 X800 0.14 P-GMW 374 µP 0.50 3.4 46.2 217 120 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										-			-						-			-	-							
SA10 0.14 PSMW 27 130 3.35 40.8 100 110 100		÷													-	-	-					- · ·					==•		-	
SAT2 11 X70 0.22 PGMW 3F-UP 0.83 24 -7.2.8 17.3 17.0 17.1 17.0 <		-		-	-									-			-						-	-					-	
SA10 11 X70 0.22 P-GMAW 2f' 1.28 5.84 -46.4 112 770 176 <th< td=""><td></td><td>3</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>313</td></th<>		3			-		-			-		-											-				-			313
BA10 360 0.77 PGMWW 3FUP 0.53 4.65 4.75 7.8 7.8 7.8 <														-	-	_		-			-									288
SA21 1911 X70 0.24 P-GMAW 3F-LP 0.53 2.15 -118.7 176 173 177 174 141 142 158 161 189 283 300 460 388 289 438 431 SA22 6.4 X52 0.43 SSFCAW 3F-DWN 120 112 171 <th< td=""><td></td><td>16.1</td><td>X80</td><td></td><td>P-GMAW</td><td></td><td>0.53</td><td></td><td>-80.64</td><td></td><td>167 167</td><td>14</td><td>0 142</td><td>_</td><td></td><td>_</td><td>336</td><td></td><td>332</td><td>473</td><td></td><td></td><td>336 3</td><td>362</td><td>336</td><td>473</td><td></td><td>334</td><td></td><td>349</td></th<>		16.1	X80		P-GMAW		0.53		-80.64		167 167	14	0 142	_		_	336		332	473			336 3	362	336	473		334		349
SA22 151 X70 0.24 P-GMAW 2F 1.28 3.81 -73.3 179 174	SA20	16.1	X80	0.27	P-GMAW	2F	1.29	4.85	-47.5	173	174 173	3 14	1 147	147	182	182	310	306	310	466	429	429	280 2	280	310	466	280	309	442	280
SA23 6.4 X52 0.43 SS-FCAW 2F 199 21.8 -19.4 203 180 202 180 204 201 202 283 212 212 280 223				-									-																	341
SA42 0.4 XS2 0.44 SS+FCAW 2F 1.99 21.0 9.7 204 211 205 206 214 211 212 212 212 212 212 212 212 223 233													-																	335
SAS2 8 XS2 0.14 SSFCAW 2FDWN 1.29 14.1 -17.7 7 14 157 150 204 202 204 808 41.4 12.2 22.7 20.5 40.8 20.2 12.8 20.3 12.9 20.3 12.2 20.1 12.2 12.2 22.1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>							-		-								-					-	-					-		-
SA2 8 X32 0.14 SF-CAW 2F 19 30.4 -30.6 226 220 215 112 121 211 212 112<		÷																						-00						
SA27 11 X70 0.22 SSFCAW 3F-DWN 129 5 -38.8 116 186 184 160 1071 1182 184 271 274 362 377 360 282 274 362 274 362 274 362 277 362 277 262 277 278 310 277 283 416 150 170 172 184 184 183 183 184 185 183 183 184 184 184 184 185 183 183 184 184 185 184 184 185 183 183 184 184 185 185 185 185 185 185 185 185 185 185 185 185 185 185		ů.		-		-	-				-	-			-	-	-						-							-
SA28 11 X70 0.22 SSFCAW 2F 199 11.7 17.1 17.1 180 181 182 186 182 180 21.0 27.7 26.7 210 27.7 26.7 210 27.7 25.2 29.4 27.7 25.7 210 27.7 25.2 29.4 27.7 25.7 210 27.7 25.2 29.4 27.7 25.7 210 27.7 25.7 210 27.7 25.7 210 27.7 23.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 30.0 418 27.7 27.1 27.1 27.1 27.1		-													-			-												
SA20 16.1 X80 0.27 S8-FCAW 3F-DWN 1.29 5 -476 170 172 168 148 146 150 180 180 329 423 329 435 226 286 321 423 227 277 300 410 277 176 149 150 152 181 183 286 333 303 227 441 289 280 441 289 280 441 289 280 441 289 280 441 289 280 441 289 280 441 289 280 441 289 280 441 280 333 273 441 280 333 64 480 0.43 65FCAW 3FUP 1.99 64.4 -96 198 216 171 171 171 172 171 171 172 181 183 180 286 232 252 223 232	-			-			-	-						_			_					-		-					-	270
SA31 19.1 X70 0.24 SS-FCAW 3F-DWN 1.29 4.05 -56.7 182 180 184 186 185 187 187 187 280 281 281 281 286 274 143 481 386 283 286 283 286 284 185 127 161 175 277 271 221 223 283 282 280 282 282 282 282 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>3 14</td> <td>8 146</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>423</td> <td>435</td> <td>412</td> <td>-</td> <td>286</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>286</td>										-		3 14	8 146				-	-	-	423	435	412	-	286	-			-	-	286
SA32 19.1 X70 0.24 SSFCAW 2F 1.99 6.35 -40.7 183 185 185 175	SA30	16.1	X80	0.27	SS-FCAW		1.99	5.45	-21.9	177	175 175	5 14	9 150	152	183	183	296	303	303	418	412	401	277 2	277	303	418	277	300	410	277
SA33 6.4 X80 0.43 GS-FCAW 3F-UP 1.99 21.4 -9.6 198 206 207 21 23 216 237 262 280 249 232 216 237 223 216 237 223 216 237 223 216 237 227 232 216 237 226 280 282 223 216 233 255 253 255 253 255 253 241 214 216 163 171 176		19.1		0.24		3F-DWN	1.29			182	180 184	14	8 145	155	181	179	280	286	274	423	441	386	283 2	289	286		289	280	417	286
SA34 6.4 X80 0.43 GS-FCAW 2F 1.29 8.3 -22.3 183 178 182 172 191 191 129 293 280 313 358 329 252 223 243 338 252 SA35 8 X70 0.14 GS-FCAW 3F-UP 199 18.44 -18.5 217 216 184 182 174 204 208 208 306 262 224 244 201 452 244 244 201 452 244 244 202 480 477 429 244 244 202 480 244 202 480 244 202 480 244 202 480 244 202 244 244 244 242 244 24															-													-		303
SA35 8 X70 0.14 GS+CAW 3F-UP 1.99 18.44 -18.54 211 217 216 184 182 174 204 208 197 199 74 280 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 306 223 214 208 262 227 480 204 244 244 244 244 244 246 146 146 146 146 146 146 146 146 148 148 148 241 241 241 241 241 241 241 241												-					-		-	-				-						221
SA36 8 X70 0.14 GS-FCAW 2F 1.29 8.16 -24 214 214 214 214 145 195 202 190 480 477 429 244 244 202 480 244 201 452 244 SA37 11 X70 0.22 GS-FCAW 3F-UP 1.99 2.25 -50 191 184 187 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		-					-																	-			-			
SA37 11 X70 0.22 GS-FCAW 3F-UP 1.99 2.05 -50 191 184 187 167 164 151 164 151 168 265 263 242 242 285 322 345 391 260 262 264 361 264 363 274 SA38 11 X70 0.22 GS-FCAW 2F-UP 1.99 6.6 -24.4 176 174 175 151 146 149 178 180 361 280 2		-						-			-	-	-	_				-					-							
SA38 11 X70 0.22 GS-FCAW 2F 1.29 3.25 -63.7 187 187 186 160 163 171 182 182 286 362 340 317 280 288 362 280 286 286 286 362 280 362 280 362 280 362 280 362 280 362 280 362 480 480 480 293 286 362 280 362 484 480 480 283 303 420 286 280 362 480 441														_																
SA39 16.1 X80 0.27 GS-FCAW 3F-UP 1.99 6.6 -24.4 176 171 175 151 146 149 178 179 299 306 303 407 435 418 293 289 306 435 293 303 420 291 SA40 16.1 X80 0.27 GS-FCAW 2F 1.29 5.1 -50 171 170 171 171 181 145 145 145 145 145 145 145 145 146 191 302 286 321 444 441 418 303 285 293 441 441 418 303 285 293 441 450 293 483 441 441 441 441 441 441 441 441 441 441 443 303 303 420 243 441 441 441 441 441 441 441 441 441 441 441 441 441 441 441 4																	_							268						274
SA41 19.1 X70 0.24 GS-FCAW 3F-UP 1.99 5.05 -52.85 180 179 178 148 145 149 172 168 280 293 423 441 418 313 329 293 441 329 289 427 321 SA42 19.1 X70 0.24 GS-FCAW 2F 1.29 3.25 -68.7 175 175 175 180 147 143 <	SA39	16.1	X80		GS-FCAW	3F-UP	1.99	6.6	-24.4	176			1 146	149			299		303			418		289	306				420	291
SA42 19.1 X70 0.24 GS+CAW 2F 1.29 3.25 -68.7 175 175 180 147 143 133 241 246 213 246 213 241 244 241 143 133 241 240 234 237 345 245 237 345 237 345 237 345 <t< td=""><td></td><td>16.1</td><td></td><td>0.27</td><td></td><td></td><td></td><td></td><td></td><td>171</td><td>170 171</td><td>13</td><td>7 145</td><td>145</td><td>175</td><td>180</td><td>317</td><td>321</td><td>317</td><td>494</td><td>441</td><td>441</td><td>303 2</td><td>286</td><td>-</td><td>-</td><td>303</td><td></td><td>459</td><td>294</td></t<>		16.1		0.27						171	170 171	13	7 145	145	175	180	317	321	317	494	441	441	303 2	286	-	-	303		459	294
SA43 6.4 X80 0.43 MCAW 3F-UP 0.53 6.6 -33.7 175 172 172 165 167 180 194 194 303 313 311 312 286 246 313 341 246 310 320 246 SA44 6.4 X80 0.43 MCAW 2F 1.29 7 -31.2 167 164 183 164 170 182 199 198 332 345 321 280 234 237 345 345 345 237 318 315 235 235 213 212 214 144 143 193 193 204 204 246 237 345 345 237 318 315 235 235 213 213 214 144 143 193 193 204 204 246 453 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246 246				₹.= .		••••				180	179 178	3 14	8 145	149	172	168	286	289	293	423	441	418	313 3	329			329		.=.	321
SA44 6.4 X80 0.43 MCAW 2F 1.29 7 -31.2 167 164 183 164 170 182 199 198 332 345 27 345 345 237 345 237 345 237 345 237 318 315 235 SA45 8 X70 0.14 MCAW 3F-UP 0.53 5.48 -39.375 213 212 214 144 141 143 193 193 204 206 202 447 466 453 249 240 466 249 204 456 249 SA46 8 X70 0.14 MCAW 2F 1.29 4.52 -35.97 210 215 140 139 139 191 191 210 211 213 480 480 254 254 210 480 254 240 480 254 240 480 254 240 480 254 240 243 243 240 240 240 240<	-						-			-			-	-															-	280
SA45 8 X70 0.14 MCAW 3F-UP 0.53 5.48 -39.375 213 212 214 144 141 143 193 193 204 266 453 249 206 466 249 204 456 249 SA46 8 X70 0.14 MCAW 2F 1.29 4.52 -35.97 210 215 215 140 139 193 191 201 201 473 480 480 254 210 480 254 204 478 254 SA46 8 X70 0.14 MCAW 2F 1.29 4.52 -35.97 210 215 140 139 193 191 191 210 201 473 480 480 254 249 204 480 254 249 240 480 249 240 480 254 249 240 480 254 249 240 480 254 240 249 240 246 249 240 240 2		-				0. 0.		6.6		-													-	-			-			246
SA46 8 X70 0.14 MCAW 2F 1.29 4.52 -35.97 210 215 140 139 139 191 191 210 201 473 480 480 254 210 480 254 210 480 254 240 478 254 SA47 11 X70 0.22 MCAW 3F-UP 0.53 3.7 -59.7 177 175 176 148 154 153 151 296 303 299 423 391 396 396 407 303 423 407 299 403 401 SA48 11 X70 0.22 MCAW 2F 1.29 3.5 -57.33 185 182 182 182 182 182 174 173 210 280 401 386 371 306 401 310 277 377 308 349 161 188 143 145 158 174 178 178 18 141 148 140 158 171<	-	-			-		-	7	-				-	-		_					-		-	-						
SA47 11 X70 0.22 MCAW 3F-UP 0.53 3.7 -59.7 177 175 176 148 153 151 296 303 299 423 391 396 396 407 303 423 407 299 403 401 SA48 11 X70 0.22 MCAW 2F 1.29 3.5 -57.33 185 182 182 152 161 158 174 173 271 280 401 306 306 407 303 423 407 299 403 401 SA48 11 X70 0.22 MCAW 2F 1.29 3.5 -57.33 185 182 182 152 161 158 174 173 271 280 401 316 300 423 407 299 403 401 SA49 16.1 X80 0.27 MCAW 3F-UP 0.53 3.4 -80.8 168 168 143 145 158 150 329 329		-										_		-		_	_						-	-						
SA48 11 X70 0.22 MCAW 2F 1.29 3.5 -57.33 185 182 182 152 161 158 174 173 271 280 401 310 280 401 310 277 377 308 SA49 16.1 X80 0.27 MCAW 3F-UP 0.53 3.4 -80.8 168 167 168 138 143 145 158 156 329 332 321 341 310 277 377 308 SA49 16.1 X80 0.27 MCAW 3F-UP 0.53 3.4 -80.8 168 167 168 138 143 145 158 158 158 158 329 329 487 431 310 280 487 381 332 487 381 332 487 381 332 487 381 332 487 381 332 480 361 362 361 361 362 361 361 361 361 361 <				-												-	-		201	-				-	-					
SA49 16.1 X80 0.27 MCAW 3F-UP 0.53 3.4 -80.8 168 167 168 138 143 145 158 156 329 323 329 487 431 331 330 460 376 SA49 16.1 X80 0.27 MCAW 2F 1.29 3.45 -68.2 168 169 168 137 141 148 160 159 329 329 424 466 423 362 367 329 494 367 327 461 364 364 376 329 494 466 423 362 367 329 494 367 327 461 364 364 376 329 494 367 329 464 379 361 364 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379 464 379<													-																	308
SA50 16.1 X80 0.27 MCAW 2F 1.29 3.45 -68.2 168 169 168 137 141 148 160 159 329 329 494 466 423 362 367 329 494 367 327 461 364 SA51 19.1 X70 0.24 MCAW 3F-UP 0.53 2.7 -95.3 173 173 174 140 143 141 154 159 310 310 367 310 473 391 309 464 379					-		-										_					-				-			-	376
												-	-	-			329	325	329	-			362	367	329	-				364
SA52 19.1 X70 0.24 MCAW 2F 1.29 4.85 -52.7 176 179 180 142 145 154 156 160 299 286 460 381 292 431 372																														379
	SA52	19.1	X70	0.24	MCAW	2F	1.29	4.85	-52.7	176	179 180) 14	2 145	154	156	160	299	289	286	460	441	391	381 3	362	299	460	381	292	431	372

									Location																				
									Ocular Reading Hardness (Hv5)																				
												CG-H	AZ Slee	eve					CG	-HAZ S	leeve								
Weld ID	Pipe Thickness	Grade	C.E	Process	Welding Position	Heat Input	Cool	ng Rate	CGHA	Z - Pipe	Side	Side			Weld		CGHAZ - Pipe Side		е	Side		We	ld	Peak Hardne		Hv5)	Average	e Hardness	(Hv5)
		0.000					∆T 800-500C	Slope at 540C	1	2	3	1	2	3	1	2	1	2 3	1	2	3	1	2	CGHAZ Pipe	CGHAZ	Weld	CGHAZ Pipe	CGHAZ	Weld
	(mm)					(kJ/mm)	(s)	(degC / sec)		_	-		_	-		_				_	-			•	Sleeve			Sleeve	
SW1	6.4	X52	0.43	SMAW	2F	0.53	3.56	-63.25	143	153	145		-	147				96 441	435		429	296	296	453	435	296	430	427	296
SW2	6.4	X52	0.43	SMAW	3F-UP	1.29	6.28	-37.25	180	151	158	164	-	160				07 371	345		362	268	249	407	362	268	355	353	258
SW3	6.4	X52	0.43	SMAW	2F	0.90	3.48	-92.5	149	144	142		-	150				47 460		407	412	332	317	460	412	332	442	410	325
SW4	6.4	X52	0.43	SMAW	3F-UP	1.29	4	-64.5	147	145	152	153	152	153	184		-	41 401	396	401	396		260	441	401	274	424	398	267
SW5	8	X52	0.14	SMAW	2F	0.90	4.25	-42.6	210	209	216	139	139	140	174	185	-	12 199	480	480	473	306	271	212	480	306	207	478	289
SW6	8	X52	0.14	SMAW	3F-UP	1.56	7	-32.8	211	211	217	137	142	139	191	189	208 2	08 197	494	460	480	254	260	208	494	260	204	478	257
SW7	11	X70	0.22	SMAW	3F-DWN	0.90	4.25	-53.3																					
SW8	11	X70	0.22	SMAW	2F	1.29	7	-30.2																					
SW13	6.4	X70	0.43	P-GMAW	3F-UP	0.53	6.24	-43.47	139	143	143	146	154	148	182	180	480 4	53 453	435	391	423	280	286	480	435	286	462	416	283
SW14	6.4	X70	0.43	P-GMAW	2F	1.29	5.8	-40.25	151	141	152	159	159	158	190	187	407 4	66 401	367	367	371	257	265	466	371	265	425	368	261
SW15	8	X80	0.14	P-GMAW	3F-UP	0.53	3.35	-68.9	208	210	215	144	138	138	182	181	214 2	10 201	447	487	487	280	283	214	487	283	208	474	281
SW16	8	X80	0.14	P-GMAW	2F	1.29	4.15	-50.8	216	218	217	139	140	140	190	193	199 1	95 197	480	473	473	257	249	199	480	257	197	475	253
SW17	11	X70	0.22	P-GMAW	3F-UP	0.53	2	-115.1	174	172	173	148	149	148	162	169	306 3	13 310	423	418	423	353	325	313	423	353	310	421	339
SW18	11	X70	0.22	P-GMAW	2F	1.29	3.85	-68.3	182	176	179	165	162	154	179	178	280 2	99 289	341	353	391	289	293	299	391	293	290	362	291
SW33	6.4	X80	0.43	GS-FCAW	3F-UP	1.99	10.08	-23.125	163	167	151	167	164	173	191	193	349 3	32 407	332	345	310	254	249	407	345	254	363	329	252
SW34	6.4	X80	0.43	GS-FCAW	2F	1.29	3.84	-50	153	148	157	164	156	165	194	182 3	396 4	23 376	345	381	341	246	280	423	381	280	399	355	263
SW35	8	X70	0.14	GS-FCAW	3F-UP	1.99	10.6	-25.7	210	210	210	138	140	141	191	191 3	210 2	10 210	487	473	466	254	254	210	487	254	210	475	254
SW36	8	X70	0.14	GS-FCAW	2F	1.29	5.85	-32.6	216	214	215	141	146	151	198	190	199 2	02 201	466	435	407	237	257	202	466	257	201	436	247
SW37	11	X70	0.22	GS-FCAW	3F-UP	1.99	4.35	-22.7	178	179	178	166	162	161	178	177	293 2	89 293	336	353	358	293	296	293	358	296	292	349	294
SW38	11	X70	0.22	GS-FCAW	2F	1.29	7.8	-33.34	184	184	182	158	157	159	170	173	274 2	74 280	371	376	367	321	310	280	376	321	276	371	315
SW43	6.4	X80	0.43	MCAW	3F-UP	0.53	3.04	-90.9	140	144	143	150	149	150	186	187	473 4	47 453	412	418	412	268	265	473	418	268	458	414	267
SW44	6.4	X80	0.43	MCAW	2F	1.29	5.8	-28.57	143	156	146	163		157	187	-	453 3	81 435	349	-	376		274	453	401	274	423	375	270
SW45	8	X70	0.14	MCAW	3F-UP	0.53	3.2	-76.3	206	211	210			139				08 210	501	480	480		274	218	501	274	212	487	274
SW46	8	X70	0.14	MCAW	2F	1.29	5.7	-40	215	212	216	140		157	-	-	-	06 199	473	418	376	244	252	206	473	252	202	422	248
SW47	11	X70	0.22	MCAW	3F-UP	0.53	4	-62.5	179	178	177			160				93 296			362	325	325	296	376	325	293	370	325
SW48	11	X70	0.22	MCAW	2F	1.29	4.5	-50.4	184	184	183		-	166				74 277	-		336	321	325	277	353	325	275	346	323
																					1								

Table 4.19: Cooling Data and Hardness Results – Sleeve Fillet Welds – Water Backing

Cooling rate comparisons between bead on pipe and fillet welds for 0.53 and 1.29kJ/mm heat inputs and each process are shown in **Figures 4.54** and **4.55**. These comparisons show that the weld cooling rate for the fillet welded sleeves increase considerably over the bead on pipe welds for the same heat inputs. This is due to the additional mass and heat sink capacity when the sleeve is attached.

Cross-sections were extracted from each weld and hardness measurements were made to develop a relationship between heat input, cooling rate, and CGHAZ hardness in the base metal (i.e., carrier pipe). Cross-sections for air and water backed sleeve fillet welds are provided as **Appendix M and Appendix N** (note that air and water backed bead on pipe cross-sections are included as Appendix D and Appendix F, as previously discussed in Task 3). **Figures 4.56** to **4.60** show the general trend of increasing hardness with increasing heat sink capacity going from bead on pipe with air backing, to sleeve fillet welds with water backing. These examples are shown for the 6.4mm thick X52 pipe with the highest carbon equivalent (C.E.) of all materials evaluated.

Figures 4.61 to **4.63** shows the result of the CGHAZ hardness of the carrier pipe for each repair scenario (i.e., direct bead on pipe with air backing, sleeve fillet welding with air backing, and sleeve fillet welding with water backing) as a comparison with each welding process. To the right of each plot are the cooling times (800 to 500°C in seconds) vs. heat input to show the relationship between the resulting hardnesses and "actual" cooling times for each weld deposited. The trend of increasing hardness with shorter cooling times (i.e., faster cooling rates) is apparent, however there does not appear to be a trend of any process resulting in softer CGHAZ's at a given cooling rate compared to the others. The water backed sleeve fillet welds demonstrate overall higher hardnesses and the air backed bead on pipe welds have the lowest hardnesses over the same heat input range.

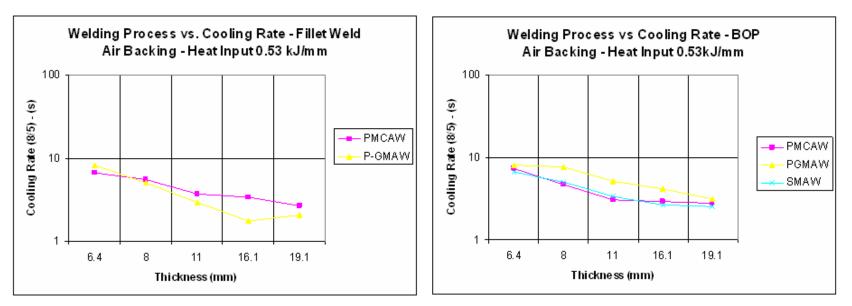


Figure 4.54: Welding Process vs. Cooling Rate, Fillet Weld vs. Bead on Pipe, 0.53 kJ/mm

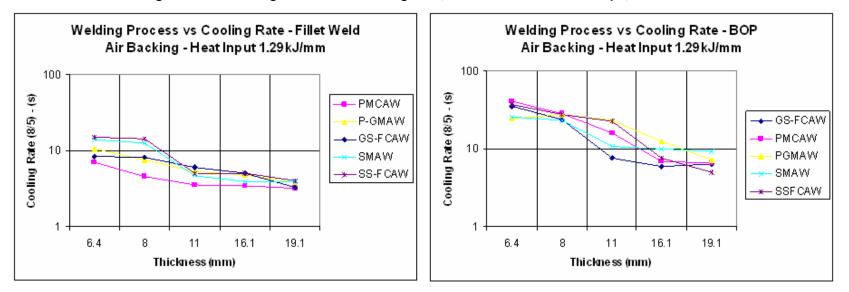


Figure 4.55: Welding Process vs. Cooling Rate, Fillet Weld vs. Bead on Pipe, 1.29 kJ/mm

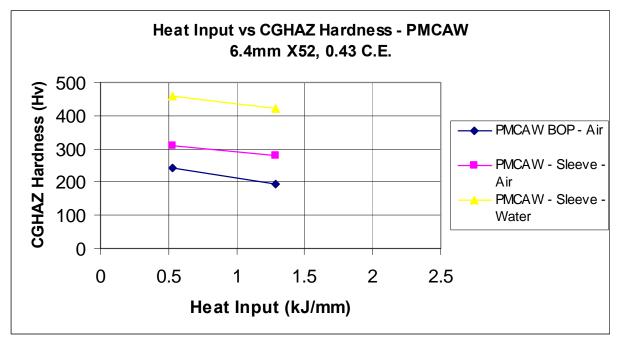


Figure 4.56: Heat Input vs. Hardness, PMCAW

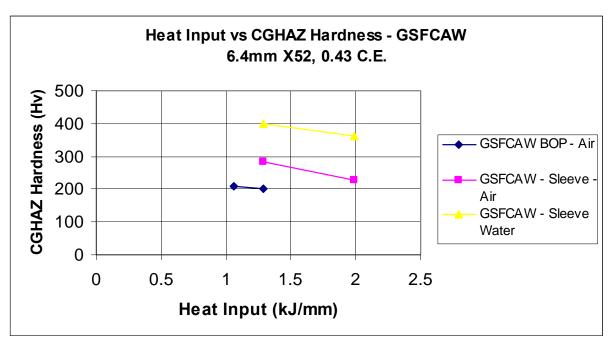


Figure 4.57: Heat Input vs. Hardness, GSFCAW

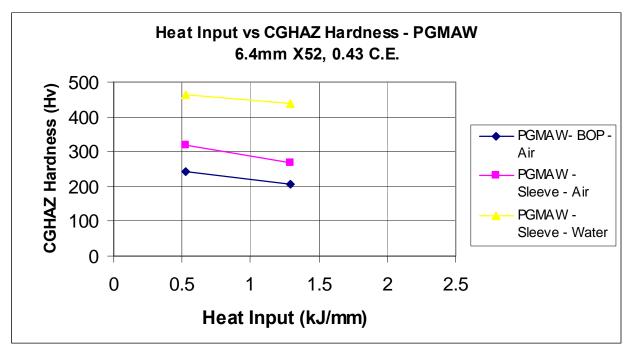


Figure 4.58: Heat Input vs. Hardness, PGCAW

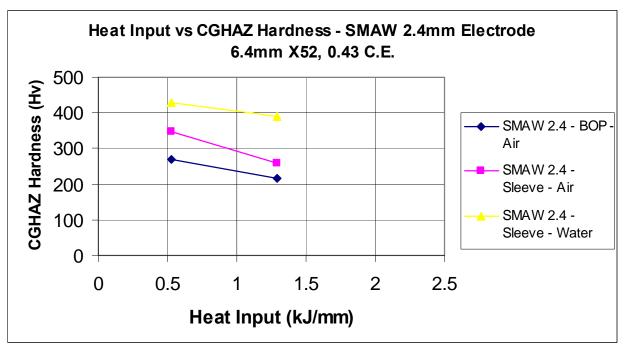


Figure 4.59: Heat Input vs. Hardness, SMAW, 2.4mm Diameter Electrode

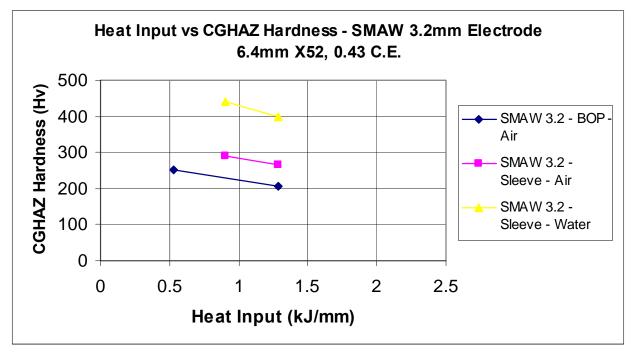


Figure 4.60: Heat Input vs. Hardness, SMAW, 3.2mm Diameter Electrode

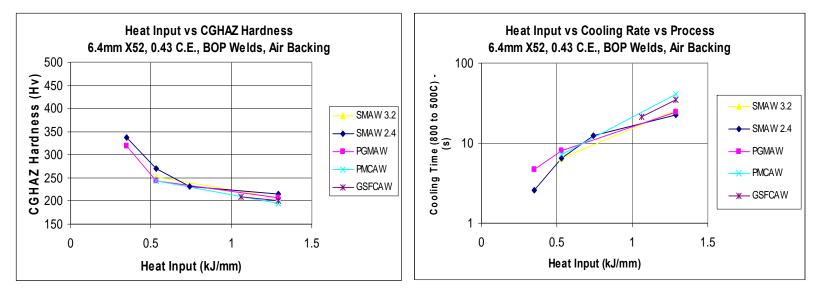


Figure 4.61: Heat Input vs. Hardness vs. Cooling Rate, Bead on Pipe, Air Backing

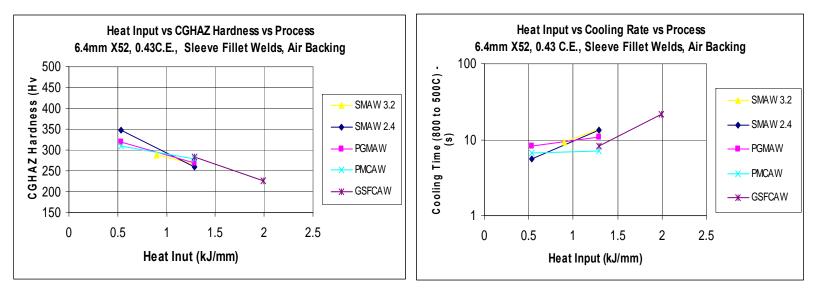


Figure 4.62: Heat Input vs. Hardness vs. Cooling Rate, Sleeve Fillet Welding, Air Backing

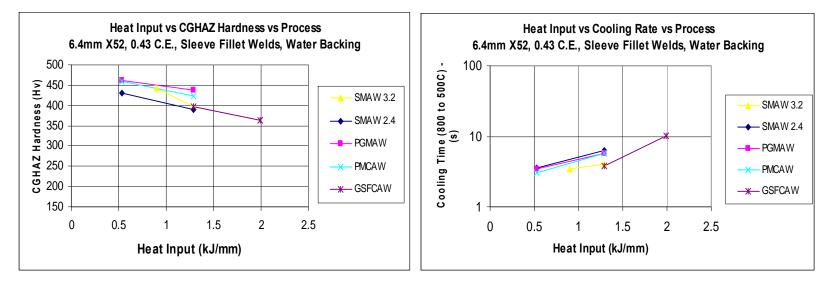


Figure 4.63: Heat Input vs. Hardness vs. Cooling Rate, Sleeve Fillet Welding, Water Backing

4.10 Task 8: Hot-tap Joint Simulation

An NPS36 X70 pipe (19mm thickness) and a 25mm thick sleeve (ASTM A516 Gr70, C.E. 46) was used for the test assembly as supplied by Williamson Industries. The long seams of the sleeves were positioned at the 12 o'clock and 6 o'clock positions (see **Figure 4.64**) to allow a continuous non-interrupted fillet weld to be deposited with vertical up progression from the bottom of the pipe to the top. This method allowed for procedures to be developed for all positions of welding with each process for a three pass fillet weld. The target final fillet weld size had a leg length of 13mm. The good fit-up between the Williamson Industries provided sleeve and the NPS36 pipe is shown in **Figure 4.65**.

The processes that were successfully evaluated included pulsed gas metal arc welding (PGMAW), pulsed metal cored arc welding (PMCAW) and gas shielded flux cored arc welding (FCAW). An attempt was made to implement self shielded FCAW however the welding control system and power source could not accurately control the parameters required to deposit a sound weld with a 2mm diameter electrode. However, a fillet weld will be made semi-automatically at a later date to compare the results of the weld zone hardnesses between all of the processes investigated.

The welding equipment used included Miller's Pipe Pro Axcess 450 power source (serial number LF310619) and Pipe Pro feeder. The welding head used for this evaluation was from RMS Welding Systems, which is a modified "bug and band" circumferential welding system with torch fixturing that was designed specifically to perform fillet welding. The welding head is shown in **Figure 4.66**.

The welding procedures that were developed for each of the welding processes are shown in **Table 4.20**. It should be noted that the welding parameters for each individual weld pass for each process application did not change as the weld head progressed around the sleeve. This is an obvious advantage in that complex welding procedures do not have to be implemented for this application.

The first, second, and third pass of the FCAW process are shown in **Figure 4.67**, **4.68**, and **4.69**, respectively. The first, second, and third pass of the PMCAW process are shown in **Figures 4.70**, **4.71**, and **4.72**, respectively. The first, second, and third pass of the PGMAW process are shown in **Figures 4.73**, **4.74**, and **4.75**, respectively. An example of the mechanized welding system in operation is shown in **Figure 4.76**.

Figure 4.64: Sleeve Assembly

Figure 4.65: Sleeve Fit-up

Figure 4.66: Mechanized Welding Head and Travel Band Set-up

Weld Process	Weld Pass	Wire Feed Speed	VTAT Amperage Setting	Arc Control	Trim	Voltage	Travel Speed	Hea	t Input	Oscillation Rate	Oscillation Dwell	Oscillation Width Setting
1100633	(#)	(ipm)	(A)			(2)	(IPM)	(kJ/in)	(kJ/mm)	(BPM)	(ms)	Seang
FCAW	1	285	200	NA	NA	24	8	36.0	1.42	100	250	275
FCAW	2	250	200	NA	NA	24	10	28.8	1.13	250	50	130
FCAW	3	265	200	NA	NA	24	8	36.0	1.42	100	250	185
MCAW-P	1	170	135	41	37	19	6	25.7	1.01	100	300	275
MCAW-P	2	140	120	41	37	16.5	9	13.2	0.52	250	50	200
MCAW-P	3	155	130	41	37	19	7	21.2	0.83	100	250	185
GMAW-P	1	170	130	45	27	17.5	6	22.8	0.90	100	300	275
GMAW-P	2	130	115	30	27	18	9	13.8	0.54	250	50	200
GMAW-P	3	150	130	30	23.5	18	7	20.1	0.79	100	250	185
	FCAW Elect	trode 1.2mm ESAB [Dual Shield 70T12M									
	MCAW Elec	trode 1.2mm Hobart	/ Trimark Metalloy 7									
	GMAW Elec	trode 1.2mm Thysse	en K-Nova, C10 Gas	, Synergic Ρι	ilse M	ode						

Table 4.20: Mechanized Fillet Welding Procedures

Figure 4.67: FCAW First Pass

Figure 4.68: FCAW Second Pass

Figure 4.69: FCAW Third Pass

Figure 4.70: PMCAW First Pass

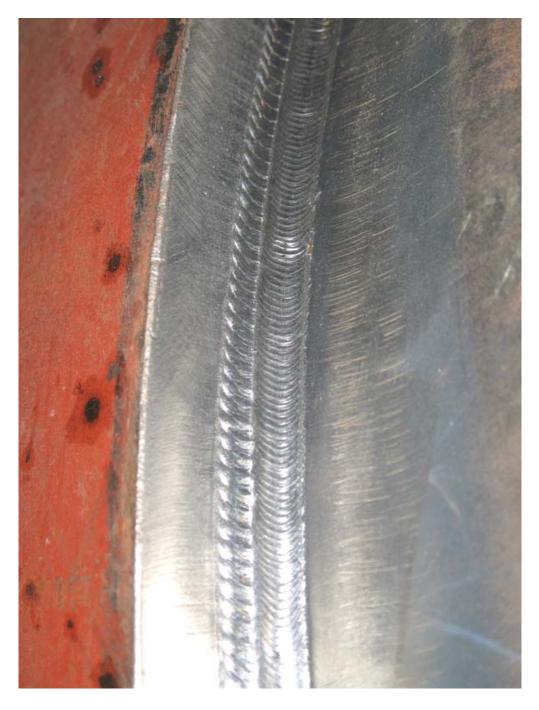


Figure 4.71: PMCAW Second Pass

Figure 4.72: PMCAW Third Pass

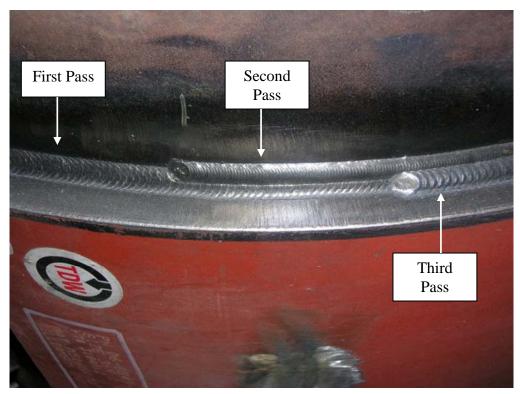
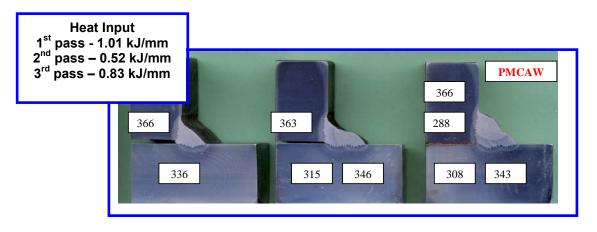
Figure 4.73: PGMAW First Pass

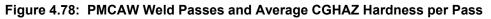
Figure 4.74: PGMAW Second Pass

Figure 4.75: PGMAW Third Pass

Figure 4.76: Mechanized Fillet Welding

The ends of the welds for each pass for each process were staggered by approximately four (4) inches (see **Figure 4.77**), to demonstrate the effectiveness of weld and HAZ tempering from subsequent passes by each process evaluated.


Figure 4.77: Weld Pass Staggering

Macro and micro sections were extracted from each of the mechanized welds and then prepared for weld bead penetration profile examination and hardness evaluations, as well as nick break and face bend tests. The macro cross-section of each completed fillet weld and each weld pass for each process are shown in **Figures 4.78** to **4.80**. Shown on each of the cross-sections are the heat inputs and average HAZ hardness measurements for each weld pass that demonstrate the degree of tempering of the previous weld deposits by the subsequent weld passes. It is interesting to note that each weld with each process demonstrated similar hardness results and degree of hardness reductions (i.e., tempering), however the PGMAW and PMCAW processes achieved the same degree of tempering at heat inputs 50% less than those of the FCAW process. This infers that the FCAW process is not as effective at tempering compared to the other two processes. The PMCAW and PGMAW processes therefore have the potential to provide weld zones that are less susceptible to hydrogen induced cracking compared to the FCAW process, since increasing hardness and susceptibility to cracking are directly related.

Face bend specimens were extracted from each completed mechanized fillet weld and tested in accordance with API 1104. The results are shown in **Figures 4.81** to **4.83**. Each weld was acceptable in that they demonstrated no signs of discontinuity exceeding 1/8" in size.

Nick break specimens were also extracted from each weld and tested in accordance with API 1104. The results are shown in **Figures 4.84** to **4.86**. Each weld was acceptable in that they demonstrated good fusion with no signs of cracks, lack of fusion, slag inclusions, or porosity exceeding the acceptance criteria.

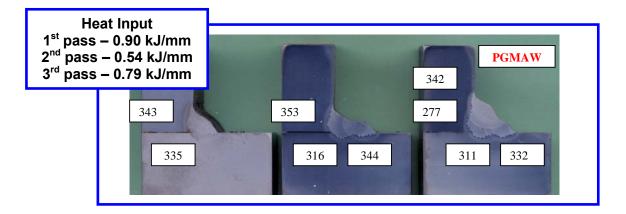


Figure 4.79: PGMAW Weld Passes and Average CGHAZ Hardness per Pass

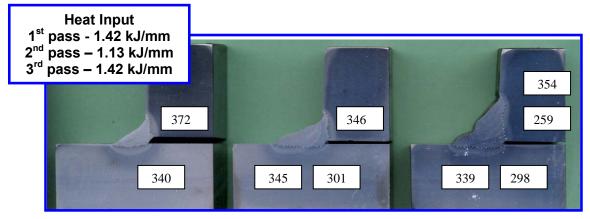


Figure 4.80: FCAW Weld Passes and Average CGHAZ Hardness per Pass

Figure 4.81: FCAW Face Bend Test Results

Figure 4.82: PGMAW Face Bend Results

Figure 4.83: PMCAW Face Bend Results

Figure 4.84: FCAW Nick Break Results

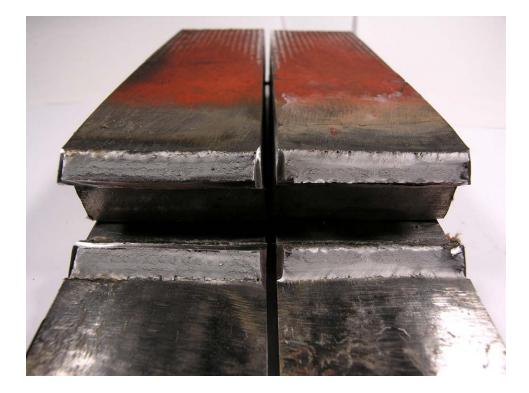


Figure 4.85: PGMAW Nick Break Results

Figure 4.86: PMCAW Nick Break Results

5 CONCLUSIONS

Based on the results of the alternative welding processes evaluated

- (a) Each have the potential to provide slower cooling rates over a range of heat inputs, compared to the SMAW process.
 - Slower cooling resulted in lower CGHAZ hardness and thus lower susceptibility to hydrogen cracking
 - PMCAW and PGMAW demonstrated lower CGHAZ hardness compared to SMAW at the same calculated heat input level.
- (b) Each alternative process exhibited a higher susceptibility to burn-though compared to SMAW, likely due to their higher process arc efficiencies and resulting higher peak inside surface temperature for a given calculated heat input level. The SSFCAW process had demonstrated the highest susceptibility to burn-through, however SMAW with 2.4mm electrodes had demonstrated the lowest.
- (c) Possible that adjusting pulse waveform parameters could reduce their susceptibility
- (d) Alternative processes offer the advantage of mechanization to enhance consistency of the welding procedure in all positions of welding as well as enhanced productivity with continuous wire feed and less interruptions.
- (e) PMCAW and PMCAW processes demonstrated enhanced tempering of HAZ's in previously weld deposits at heat inputs 50% lower than the FCAW process, as demonstrated in Task 8.
- (f) Alternate welding processes passed the requirements for bend and nick break testing as per API 1104 specifications.
- (g) Each process demonstrated longer hydrogen delay times in the simulated hydrogen model when welding on water filled pipe compared to the static air conditions.